Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Jan;83(1):175–179. doi: 10.1172/JCI113855

Mast cell tryptase causes airway smooth muscle hyperresponsiveness in dogs.

K Sekizawa 1, G H Caughey 1, S C Lazarus 1, W M Gold 1, J A Nadel 1
PMCID: PMC303658  PMID: 2642918

Abstract

Supernatants obtained by degranulation of dog mastocytoma cells greatly increased the sensitivity and the magnitude of the contractile response of isolated dog bronchial smooth muscle to histamine. The enhanced contractile response was reversed completely by H1-receptor antagonists and was prevented by an inhibitor of tryptase (a major protease released with histamine from secretory granules of mast cells). The potentiation of histamine-induced contractions was reproduced by active tryptase in pure form. The contractions due to the combination of histamine and purified tryptase were abolished by the Ca2+ channel blockers nifedipine and verapamil. The bronchoconstricting effects of KCl and serotonin, which, like histamine, contract airway smooth muscle by a mechanism predominantly involving membrane potential-dependent Ca2+ transport, were also potentiated by tryptase. However, the contractile effects of acetylcholine, which contracts dog airway smooth muscle by a mechanism independent of Ca2+ channels, were unaffected by tryptase. These findings show a striking promotion of agonist-induced bronchial smooth muscle contraction by mast cell tryptase, via direct or indirect effects on Ca2+ channels, and the findings therefore suggest a novel potential mechanism of hyperresponsiveness in dog bronchi.

Full text

PDF
175

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa H., Chung K. F., Leikauf G. D., Ueki I., Bethel R. A., O'Byrne P. M., Hirose T., Nadel J. A. Significance of thromboxane generation in ozone-induced airway hyperresponsiveness in dogs. J Appl Physiol (1985) 1985 Dec;59(6):1918–1923. doi: 10.1152/jappl.1985.59.6.1918. [DOI] [PubMed] [Google Scholar]
  2. Black J., Armour C., Johnson P., Vincenc K. The calcium dependence of histamine, carbachol and potassium chloride-induced contraction in human airways in vitro. Eur J Pharmacol. 1986 Jun 17;125(2):159–168. doi: 10.1016/0014-2999(86)90023-3. [DOI] [PubMed] [Google Scholar]
  3. Boushey H. A., Holtzman M. J., Sheller J. R., Nadel J. A. Bronchial hyperreactivity. Am Rev Respir Dis. 1980 Feb;121(2):389–413. doi: 10.1164/arrd.1980.121.2.389. [DOI] [PubMed] [Google Scholar]
  4. Caughey G. H., Lazarus S. C., Viro N. F., Gold W. M., Nadel J. A. Tryptase and chymase: comparison of extraction and release in two dog mastocytoma lines. Immunology. 1988 Feb;63(2):339–344. [PMC free article] [PubMed] [Google Scholar]
  5. Caughey G. H., Viro N. F., Lazarus S. C., Nadel J. A. Purification and characterization of dog mastocytoma chymase: identification of an octapeptide conserved in chymotryptic leukocyte proteinases. Biochim Biophys Acta. 1988 Jan 29;952(2):142–149. doi: 10.1016/0167-4838(88)90109-4. [DOI] [PubMed] [Google Scholar]
  6. Caughey G. H., Viro N. F., Ramachandran J., Lazarus S. C., Borson D. B., Nadel J. A. Dog mastocytoma tryptase: affinity purification, characterization, and amino-terminal sequence. Arch Biochem Biophys. 1987 Nov 1;258(2):555–563. doi: 10.1016/0003-9861(87)90377-8. [DOI] [PubMed] [Google Scholar]
  7. Chang J., Skowronek M. D., Cherney M. L., Lewis A. J. Differential effects of putative lipoxygenase inhibitors on arachidonic acid metabolism in cell-free and intact cell preparations. Inflammation. 1984 Jun;8(2):143–155. doi: 10.1007/BF00916090. [DOI] [PubMed] [Google Scholar]
  8. Chung K. F., Aizawa H., Becker A. B., Frick O., Gold W. M., Nadel J. A. Inhibition of antigen-induced airway hyperresponsiveness by a thromboxane synthetase inhibitor (OKY-046) in allergic dogs. Am Rev Respir Dis. 1986 Aug;134(2):258–261. doi: 10.1164/arrd.1986.134.2.258. [DOI] [PubMed] [Google Scholar]
  9. Coburn R. F. The airway smooth muscle cell. Fed Proc. 1977 Dec;36(13):2692–2697. [PubMed] [Google Scholar]
  10. Ferrari M. Interactions between calcium and some mylotic agents on depolarized vascular smooth muscle. J Pharm Pharmacol. 1970 Jan;22(1):71–72. doi: 10.1111/j.2042-7158.1970.tb08394.x. [DOI] [PubMed] [Google Scholar]
  11. Kirkpatrick C. T. Excitation and contraction in bovine tracheal smooth muscle. J Physiol. 1975 Jan;244(2):263–281. doi: 10.1113/jphysiol.1975.sp010796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lagunoff D., Chi E. Y., Wan H. Effects of chymotrypsin and trypsin on rat peritoneal mast cells. Biochem Pharmacol. 1975 Sep 1;24(17):1573–1578. doi: 10.1016/0006-2952(75)90081-7. [DOI] [PubMed] [Google Scholar]
  13. Lazarus S. C., DeVinney R., McCabe L. J., Finkbeiner W. E., Elias D. J., Gold W. M. Isolated canine mastocytoma cells: propagation and characterization of two cell lines. Am J Physiol. 1986 Dec;251(6 Pt 1):C935–C944. doi: 10.1152/ajpcell.1986.251.6.C935. [DOI] [PubMed] [Google Scholar]
  14. Lazarus S. C., McCabe L. J., Nadel J. A., Gold W. M., Leikauf G. D. Effects of mast cell-derived mediators on epithelial cells in canine trachea. Am J Physiol. 1986 Sep;251(3 Pt 1):C387–C394. doi: 10.1152/ajpcell.1986.251.3.C387. [DOI] [PubMed] [Google Scholar]
  15. O'Byrne P. M., Leikauf G. D., Aizawa H., Bethel R. A., Ueki I. F., Holtzman M. J., Nadel J. A. Leukotriene B4 induces airway hyperresponsiveness in dogs. J Appl Physiol (1985) 1985 Dec;59(6):1941–1946. doi: 10.1152/jappl.1985.59.6.1941. [DOI] [PubMed] [Google Scholar]
  16. Salmon J. A., Simmons P. M., Moncada S. The effects of BW755C and other anti-inflammatory drugs on eicosanoid concentrations and leukocyte accumulation in experimentally-induced acute inflammation. J Pharm Pharmacol. 1983 Dec;35(12):808–813. doi: 10.1111/j.2042-7158.1983.tb02901.x. [DOI] [PubMed] [Google Scholar]
  17. Schwartz L. B., Irani A. M., Roller K., Castells M. C., Schechter N. M. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987 Apr 15;138(8):2611–2615. [PubMed] [Google Scholar]
  18. Schwartz L. B., Lewis R. A., Seldin D., Austen K. F. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol. 1981 Apr;126(4):1290–1294. [PubMed] [Google Scholar]
  19. Schwartz L. B., Metcalfe D. D., Miller J. S., Earl H., Sullivan T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N Engl J Med. 1987 Jun 25;316(26):1622–1626. doi: 10.1056/NEJM198706253162603. [DOI] [PubMed] [Google Scholar]
  20. Shanahan F., MacNiven I., Dyck N., Denburg J. A., Bienenstock J., Befus A. D. Human lung mast cells: distribution and abundance of histochemically distinct subpopulations. Int Arch Allergy Appl Immunol. 1987;83(3):329–331. doi: 10.1159/000234317. [DOI] [PubMed] [Google Scholar]
  21. Siraganian R. P. An automated continuous-flow system for the extraction and fluorometric analysis of histamine. Anal Biochem. 1974 Feb;57(2):383–394. doi: 10.1016/0003-2697(74)90093-1. [DOI] [PubMed] [Google Scholar]
  22. Tamaoki J., Sekizawa K., Osborne M. L., Ueki I. F., Graf P. D., Nadel J. A. Platelet aggregation increases cholinergic neurotransmission in canine airway. J Appl Physiol (1985) 1987 Jun;62(6):2246–2251. doi: 10.1152/jappl.1987.62.6.2246. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES