Abstract
The effects of IFN-alpha, IFN-beta, and IFN-gamma on the differentiation of murine melanoma cells has been studied, in the presence and absence of melanocyte-stimulating hormone (MSH); the cells were highly responsive to treatment with MSH, which increased the rate of melanin production 25-fold and tyrosinase activity 6-fold within 4 d. Treatment of melanoma cells with IFN-alpha, IFN-beta, or IFN-gamma alone had no stimulatory effect on melanin production, but when the cells were cultured with IFN in the presence of MSH, pigment production was significantly and synergistically increased relative to cells cultured with MSH only. Flow cytometric analysis revealed that levels of tyrosinase in the cells were not affected by MSH or by IFN, which suggests that stimulation of melanogenic activity occurred by activation of a preexisting cellular enzyme. Scatchard analyses showed that the number of MSH receptors on IFN-treated cells was significantly increased (approximately 2.5-fold) relative to untreated cells (approximately 61,000/cell). These findings demonstrate that IFN stimulate differentiation (that is, pigmentation) of melanocytes by increasing the expression of surface MSH receptors; this in turn suggests that such a mechanism may in part be responsible for postinflammatory skin pigmentation, and provides an additional basis for action in the clinical responses of melanoma to IFN treatment.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel Malek Z. A., Hadley M. E., Bregman M. D., Meyskens F. L., Jr, Hruby V. J. Actions of melanotropins on mouse melanoma cell growth in vitro. J Natl Cancer Inst. 1986 May;76(5):857–863. [PubMed] [Google Scholar]
- Abdel-Malek Z. A., Swope V. B., Amornsiripanitch N., Nordlund J. J. In vitro modulation of proliferation and melanization of S91 melanoma cells by prostaglandins. Cancer Res. 1987 Jun 15;47(12):3141–3146. [PubMed] [Google Scholar]
- Ball E. D., Guyre P. M., Shen L., Glynn J. M., Maliszewski C. R., Baker P. E., Fanger M. W. Gamma interferon induces monocytoid differentiation in the HL-60 cell line. J Clin Invest. 1984 Apr;73(4):1072–1077. doi: 10.1172/JCI111292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basham T. Y., Merigan T. C. Recombinant interferon-gamma increases HLA-DR synthesis and expression. J Immunol. 1983 Apr;130(4):1492–1494. [PubMed] [Google Scholar]
- Berkelhammer J., Luethans T. N., Hook R. R., Jr, Oxenhandler R. W. Phenotypic instability of mouse melanomas after propagation in vivo and in vitro. Cancer Res. 1986 Jun;46(6):2923–2928. [PubMed] [Google Scholar]
- Berkelhammer J., Oxenhandler R. W., Hook R. R., Jr, Hennessy J. M. Development of a new melanoma model in C57BL/6 mice. Cancer Res. 1982 Aug;42(8):3157–3163. [PubMed] [Google Scholar]
- Bernd A., Altmeyer P., Schäfer G., Marsch W. C., Holzmann H. Bleomycin enhances the tyrosinase activity of human malignant melanoma cells in culture. Pharmacol Res Commun. 1986 Nov;18(11):1075–1091. doi: 10.1016/0031-6989(86)90024-x. [DOI] [PubMed] [Google Scholar]
- Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
- Blalock J. E., Harp C. Interferon and adrenocorticotropic hormone induction of steroidogenesis, melanogenesis and antiviral activity. Arch Virol. 1981;67(1):45–49. doi: 10.1007/BF01314600. [DOI] [PubMed] [Google Scholar]
- Chang E. H., Jay F. T., Friedman R. M. Physical, morphological, and biochemical alterations in the membrane of AKR mouse cells after interferon treatment. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1859–1863. doi: 10.1073/pnas.75.4.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creagan E. T., Ahmann D. L., Frytak S., Long H. J., Chang M. N., Itri L. M. Phase II trials of recombinant leukocyte A interferon in disseminated malignant melanoma: results in 96 patients. Cancer Treat Rep. 1986 May;70(5):619–624. [PubMed] [Google Scholar]
- Fisher P. B., Grant S. Effects of interferon on differentiation of normal and tumor cells. Pharmacol Ther. 1985;27(2):143–166. doi: 10.1016/0163-7258(85)90067-1. [DOI] [PubMed] [Google Scholar]
- Fisher P. B., Hermo H., Jr, Prignoli D. R., Weinstein I. B., Pestka S. Hybrid recombinant human leukocyte interferon inhibits differentiation in murine B-16 melanoma cells. Biochem Biophys Res Commun. 1984 Feb 29;119(1):108–115. doi: 10.1016/0006-291x(84)91625-5. [DOI] [PubMed] [Google Scholar]
- Fisher P. B., Miranda A. F., Babiss L. E., Pestka S., Weinstein I. B. Opposing effects of interferon produced in bacteria and of tumor promoters on myogenesis in human myoblast cultures. Proc Natl Acad Sci U S A. 1983 May;80(10):2961–2965. doi: 10.1073/pnas.80.10.2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher P. B., Mufson R. A., Weinstein I. B. Interferon inhibits melanogenesis in B-16 mouse melanoma cells. Biochem Biophys Res Commun. 1981 May 29;100(2):823–830. doi: 10.1016/s0006-291x(81)80248-3. [DOI] [PubMed] [Google Scholar]
- Fisher P. B., Prignoli D. R., Hermo H., Jr, Weinstein I. B., Pestka S. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. J Interferon Res. 1985 Winter;5(1):11–22. doi: 10.1089/jir.1985.5.11. [DOI] [PubMed] [Google Scholar]
- Fitzpatrick F. A., Stringfellow D. A. Virus and interferon effects on cellular prostaglandin biosynthesis. J Immunol. 1980 Jul;125(1):431–437. [PubMed] [Google Scholar]
- Foon K. A., Sherwin S. A., Abrams P. G., Stevenson H. C., Holmes P., Maluish A. E., Oldham R. K., Herberman R. B. A phase I trial of recombinant gamma interferon in patients with cancer. Cancer Immunol Immunother. 1985;20(3):193–197. doi: 10.1007/BF00205575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller B. B., Lebowitz J. Decay of hormone responsiveness in mouse melanoma cells in culture as a function of cell density. J Cell Physiol. 1980 May;103(2):279–287. doi: 10.1002/jcp.1041030213. [DOI] [PubMed] [Google Scholar]
- Fuller B. B., Lunsford J. B., Iman D. S. Alpha-melanocyte-stimulating hormone regulation of tyrosinase in Cloudman S-91 mouse melanoma cell cultures. J Biol Chem. 1987 Mar 25;262(9):4024–4033. [PubMed] [Google Scholar]
- Fuse A., Mahmud I., Kuwata T. Mechanism of stimulation by human interferon of prostaglandin synthesis in human cell lines. Cancer Res. 1982 Aug;42(8):3209–3214. [PubMed] [Google Scholar]
- Gerst J. E., Sole J., Mather J. P., Salomon Y. Regulation of adenylate cyclase by beta-melanotropin in the M2R melanoma cell line. Mol Cell Endocrinol. 1986 Jul;46(2):137–147. doi: 10.1016/0303-7207(86)90092-4. [DOI] [PubMed] [Google Scholar]
- Giacomini P., Imberti L., Aguzzi A., Fisher P. B., Trinchieri G., Ferrone S. Immunochemical analysis of the modulation of human melanoma-associated antigens by DNA recombinant immune interferon. J Immunol. 1985 Oct;135(4):2887–2894. [PubMed] [Google Scholar]
- Gray P. W., Goeddel D. V. Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grollman E. F., Lee G., Ramos S., Lazo P. S., Kaback H. R., Friedman R. M., Kohn L. D. Relationships of the structure and function of the interferon receptor to hormone receptors and establishment of the antiviral state. Cancer Res. 1978 Nov;38(11 Pt 2):4172–4185. [PubMed] [Google Scholar]
- Guerry D., 4th, Alexander M. A., Elder D. E., Herlyn M. F. Interferon-gamma regulates the T cell response to precursor nevi and biologically early melanoma. J Immunol. 1987 Jul 1;139(1):305–312. [PubMed] [Google Scholar]
- Halaban R., Lerner A. B. The dual effect of melanocyte-stimulating hormone (MSH) on the growth of cultured mouse melanoma cells. Exp Cell Res. 1977 Aug;108(1):111–117. doi: 10.1016/s0014-4827(77)80016-5. [DOI] [PubMed] [Google Scholar]
- Hattori T., Pack M., Bougnoux P., Chang Z. L., Hoffman T. Interferon-induced differentiation of U937 cells. Comparison with other agents that promote differentiation of human myeloid or monocytelike cell lines. J Clin Invest. 1983 Jul;72(1):237–244. doi: 10.1172/JCI110962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hearing V. J., Cannon G. B., Vieira W. D., Jiménez-Atiénzar M., Kameyama K., Law L. W. JB/MS murine melanoma: a new model for studies on the modulation of differentiation and of tumorigenic and metastatic potential. Int J Cancer. 1988 Feb 15;41(2):275–282. doi: 10.1002/ijc.2910410219. [DOI] [PubMed] [Google Scholar]
- Hearing V. J., Ekel T. M. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem J. 1976 Sep 1;157(3):549–557. doi: 10.1042/bj1570549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hearing V. J., Jr Mammalian monophenol monooxygenase (tyrosinase): purification, properties, and reactions catalyzed. Methods Enzymol. 1987;142:154–165. doi: 10.1016/s0076-6879(87)42024-7. [DOI] [PubMed] [Google Scholar]
- Heward C. B., Yang Y. C., Sawyer T. K., Bregman M. D., Fuller B. B., Hruby V. J., Hadley M. E. Iodination associated inactivation of beta-melanocyte stimulating hormone. Biochem Biophys Res Commun. 1979 May 14;88(1):266–273. doi: 10.1016/0006-291x(79)91725-x. [DOI] [PubMed] [Google Scholar]
- Huet C., Gresser I., Bandu M. T., Lindahl P. Increased binding of concanavalin A to interferon-treated murine leukemia L 1210 cells. Proc Soc Exp Biol Med. 1974 Oct;147(1):52–57. doi: 10.3181/00379727-147-38279. [DOI] [PubMed] [Google Scholar]
- Jiménez M., Kameyama K., Maloy W. L., Tomita Y., Hearing V. J. Mammalian tyrosinase: biosynthesis, processing, and modulation by melanocyte-stimulating hormone. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3830–3834. doi: 10.1073/pnas.85.11.3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kameyama K., Takezaki S., Kanzaki T., Nishiyama S. HLA-DR and melanoma-associated antigen (p97) expression during the cell cycle in human melanoma cell lines, and the effects of recombinant gamma-interferon: two-color flow cytometric analysis. J Invest Dermatol. 1986 Sep;87(3):313–318. doi: 10.1111/1523-1747.ep12524381. [DOI] [PubMed] [Google Scholar]
- Kameyama K., Tone T., Eto H., Takezaki S., Kanzaki T., Nishiyama S. Recombinant gamma interferon induces HLA-DR expression on squamous cell carcinoma, trichilemmoma, adenocarcinoma cell lines, and cultured human keratinocytes. Arch Dermatol Res. 1987;279(3):161–166. doi: 10.1007/BF00413251. [DOI] [PubMed] [Google Scholar]
- Kauppinen H. L., Hirvonen S., Cantell K. Effect of purification procedures on the composition of human leukocyte interferon preparations. Methods Enzymol. 1986;119:27–35. doi: 10.1016/0076-6879(86)19005-7. [DOI] [PubMed] [Google Scholar]
- Kelley V. E., Fiers W., Strom T. B. Cloned human interferon-gamma, but not interferon-beta or -alpha, induces expression of HLA-DR determinants by fetal monocytes and myeloid leukemic cell lines. J Immunol. 1984 Jan;132(1):240–245. [PubMed] [Google Scholar]
- Knight E., Jr, Korant B. D. A cell surface alteration in mouse L cells induced by interferon. Biochem Biophys Res Commun. 1977 Jan 24;74(2):707–713. doi: 10.1016/0006-291x(77)90360-6. [DOI] [PubMed] [Google Scholar]
- Kreiner P. W., Gold C. J., Keirns J. J., Brock W. A., Bitensky M. W. Hormonal control of melanocytes: MSH-sensitive adenyl cyclase in the Cloudman melanoma. Yale J Biol Med. 1973 Dec;46(5):583–591. [PMC free article] [PubMed] [Google Scholar]
- Lambert D. T., Lerner A. B. Optimization of a melanotropin-receptor binding assay by reversed-phase high-performance liquid chromatography. J Chromatogr. 1983 Aug 26;266:567–576. doi: 10.1016/s0021-9673(01)90927-6. [DOI] [PubMed] [Google Scholar]
- Lambert D. T., Stachelek C., Varga J. M., Lerner A. B. Iodination of beta-melanotropin. Time course analysis of reaction mixtures by high pressure liquid chromatography and characterization of biologically active mono- and diiodo-beta-melanotropin. J Biol Chem. 1982 Jul 25;257(14):8211–8215. [PubMed] [Google Scholar]
- Matsuyama M. Action of interferon on cell membrane of mouse lymphocytes. Inhibition of ligand-induced redistribution of surface receptors. Exp Cell Res. 1979 Dec;124(2):253–259. doi: 10.1016/0014-4827(79)90201-5. [DOI] [PubMed] [Google Scholar]
- McLane J., Osber M., Pawelek J. M. Phosphorylated isomers of L-dopa stimulate MSH binding capacity and responsiveness to MSH in cultured melanoma cells. Biochem Biophys Res Commun. 1987 Jun 15;145(2):719–725. doi: 10.1016/0006-291x(87)91024-2. [DOI] [PubMed] [Google Scholar]
- McLeod G. R., Thomson D. B., Hersey P. Recombinant interferon alfa-2a in advanced malignant melanoma. A phase I-II study in combination with DTIC. Int J Cancer Suppl. 1987;1:31–35. doi: 10.1002/ijc.2910390707. [DOI] [PubMed] [Google Scholar]
- Press F. The suboceanic mantle. Science. 1969 Jul 11;165(3889):174–176. doi: 10.1126/science.165.3889.174. [DOI] [PubMed] [Google Scholar]
- Tomita Y., Montague P. M., Hearing V. J. Anti-T4-tyrosinase monoclonal antibodies--specific markers for pigmented melanocytes. J Invest Dermatol. 1985 Nov;85(5):426–430. doi: 10.1111/1523-1747.ep12277121. [DOI] [PubMed] [Google Scholar]
- Wong G., Pawelek J. Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature. 1975 Jun 19;255(5510):644–646. doi: 10.1038/255644a0. [DOI] [PubMed] [Google Scholar]
