Skip to main content
Genetics and Molecular Biology logoLink to Genetics and Molecular Biology
. 2009 Dec 1;32(4):723–728. doi: 10.1590/S1415-47572009005000087

Population analysis of xenobiotic metabolizing genes in South Brazilian Euro and Afro-descendants

Marcos Euzébio Maciel 1, Fausto Koga Oliveira 1, Gustavo Bonfim Propst 1, Maria da Graça Bicalho 1, Iglenir João Cavalli 1, Enilze Maria de Souza Fonseca Ribeiro 1,
PMCID: PMC3036891  PMID: 21637445

Abstract

Individual variability in xenobiotic metabolism has been associated with susceptibility to developing complex diseases. Genes involved in xenobiotic metabolism have been evaluated in association studies; the difficulty of obtaining accurate gene frequencies in mixed populations makes interpretation of the results difficult. We sought to estimate population parameters for the cytochrome P450 and glutathione S-transferase gene families, thus contributing to studies using these genes as markers. We describe the frequencies of six genes (CYP1A1, CYP2D6, CYP2E1, GSTM1, GSTT1, and GSTP1) and estimate population parameters in 115 Euro-descendants and 196 Afro-descendants from Curitiba, South of Brazil. PCR-based methods were used for genotyping, and statistical analysis were performed by AMOVA with ARLEQUIN software. The mutant allele frequencies in the Afro-descendants and Euro-descendants, respectively, were: CYP1A1*2A = 30.1% and 15.2%; CYP2D6*4 = 14.5% and 21.5%; CYP2E1*5B = 7.9% and 5%; GSTP1*B = 37.8% and 28.3%. The null genotype frequencies were: GSTM1*0 = 36.8% and 46.1%; GSTT1*0 = 24.2% and 17.4%.

Keywords: CYP, GST, population study


Genetic marker studies assessing individual backgrounds from specific populations can provide information on gene flow, evolutionary history, and population dispersions, and can also help in the prediction of risks for particular diseases. Based on these studies, pharmacogenetic data have shown significant inter- and intra-population differences in the metabolism, efficiencies, and toxicities of several types of drugs. These findings have important implications for the management and treatment of human diseases (Kittles and Weiss, 2003).

Many different enzyme families are involved in xenobiotic metabolism, including cytochrome P450 (CYPs) in phase I, as well as glutathione S-transferases (GSTs) and N-acetyl-transferases (NATs) in phase II (Autrup, 2000). Several genes of the CYP family have been studied in many populations (e.g., Europeans, Africans, Asians, and their mixed descendants) in case-control studies of complex diseases. With regard to cancers, these studies focus primarily on lung, breast, and head and neck tumors (Olshan et al., 2000; Gajecka et al., 2005; Yang et al., 2005; Leichsenring et al., 2006; Losi-Guembarovski et al., 2008; Torresan et al., 2008; Varela-Lema et al., 2008).

Variants of GSTs enzymes have been extensively studied and were found to be associated with several types of neoplasias in different populations, such as Europeans and Euro-descendants (Park et al., 2000; Geisler and Olshan, 2001; Raimondi et al., 2005; Leichsenring et al., 2006; Losi-Guembarovski et al., 2008; Torresan et al., 2008), Africans and Afro-descendants (Dandara et al., 2002; Enokida et al., 2005), and Asians (Yang et al., 2005). Other studies involving genes of xenobiotic metabolism have been performed in order to describe the frequency of the mutant alleles and genotypes in different healthy populations (Garte et al., 2001; Gaspar et al., 2002; Menoyo et al., 2006). Some studies carried out in the Brazilian population described mutant allele and genotype frequencies in several regions (Arruda et al., 1998; Gattás and Soares Viera, 2000; Gaspar et al., 2002; Losi-Guembarovski et al., 2002; Rossini et al., 2002; Amorim et al., 2004; Gattás et al., 2004; Hatagima et al., 2004; Kvitko et al., 2006; Rossini et al., 2006).

In the present report, two distinct groups (Euro-descendants and Afro-descendants) from Curitiba in the South of Brazil were analyzed in order to describe the frequency of six metabolic genes (CYP1A1,CYP2E1, CYP2D6, GSTM1, GSTT1, and GSTP1). The group of Euro-descendants was comprised of 115 healthy individuals (49 males and 66 females) with an average age of 42.6 ± 7.3 years. The group of Afro-descendants was comprised of 196 healthy individuals (123 males and 73 females) with an average age of 33.4 ± 8.6 years. The ethnic differentiation from these groups was determined through a survey with self-declared information from the individuals that was attached to the Informed Consent agreement. The blood samples were collected in the Hematology and Hemotherapy Center of Paraná State (HEMEPAR), a center for blood donation, by the staff of the Immunogenetics and Histocompatibility Laboratory (LIGH). Genomic DNA was isolated from peripheral white blood cells from all individuals and sampled by a salting out procedure (Bignon and Fernandez-Viña, 1997). Polymerase chain reaction (PCR) primers were designed according to the Genome Data Bank. The genotyping of CYP1A1*2A, CYP2D6*4, CYP2E1*5B, and GSTP1*B was performed by PCR RFLP according to the following protocols, respectively: Carstensen et al. (1993), Sobtia et al. (2005), Kato et al. (1992), and Harries et al. (1997). GSTM1*0 and GSTT1*0 genotyping was performed by PCR multiplex according to the protocol described by Abdel-Rahman et al. (1996).

The allele frequencies of the CYP1A1*2A, CYP2D6*4, CYP2E*5B, GSTP1*B and the null genotypes GSTM1*0 and GSTT1*0 were obtained by direct counting. The Chi-square test was used to: 1) compare the frequencies of dominant and recessive genotypes of the genes GSTM1*0 and GSTT1*0 in individuals of the Euro and Afro-descendant groups, 2) verify whether the genes CYP1A1*2A, CYP2D6*4, CYP2E*5B, and GSTP1*B were in Hardy-Weinberg equilibrium (HWE), and 3) compare the frequencies of the mutant allele of these genes and the genotypes GSTM1*0 and GSTT1*0 with published data. The frequencies of CYP1A1*2A, CYP2D6*4, CYP2E*5B, and GSTP1*B, genotyped in 311 unrelated persons (622 chromosomes) in both samples, were compared via the analysis of the molecular variance (ARLEQUIN 3.1) according to Excoffier et al. (1992). The fixation index (Fst) was estimated for the entire sample.

The two groups studied were in Hardy-Weinberg equilibrium with regard to genotype frequencies of the genes CYP1A1*2A, CYP2D6*4, CYP2E*5B and GSTP1*B. The mutant allele and null genotype frequencies found in the present study were compared with others described in the literature from both non-Brazilian and Brazilian populations (data presented in Tables 1 and 2). When our data were compared with literature data from non-Brazilian Afro-descendants, the frequencies of individuals with mutant alleles for the genes CYP2D6*4, GSTP1*B and null genotype GSTM1*0 were not homogeneously distributed between the populations of this study (Table 1). We believe that this discrepancy is due to the different methods used for the classification of ethnic origin among research groups, in spite of the parental population from North and South America may have different gene frequencies. In this sense is important to notice that the partial χ2 values from our sample were the main responsible for the observed significance. On the other hand, the frequencies of individuals with mutant alleles and null genotypes (GSTM1*0 and GSTT1*0) for the genes studied were homogeneously distributed between populations when the non-Brazilian Europeans and Euro-descendants were considered (Table 1). The frequencies of individuals with mutant alleles and null genotypes in Brazil, both for Afro-and Euro-descendants were homogeneously distributed (Table 2).

Table 1.

Comparison between the present data and frequencies obtained in non-Brazilian samples.

Genes Frequencies
n
Reference (population)
Frequencies
n
Reference (population)
African and Afro-descendants European and Euro-descendants
CYP1A1*2A 0.210
0.239
0.235
0.301 ± 0.310
389
461
550
196
Le Marchand et al. 1998 (Hawaii and California - USA)
Garte et al. 2001 (Africans - GSEC*)
Wrensch et al. 2005 (San Francisco - USA)
Present study
χ23 = 6.07; p > 0.10
0.094
0.104
0.092
0.104
0.106
0.152 ± 0.279
4453
453
419
520
146
115
Garte et al. 2001 (Europeans - GSEC*)
Hung et al. 2003 (Europeans and Euro - Americans)
Taioli et al. 2003 (Europeans and Euro - descendants (GSEC*)
Raimondi et al. 2005 (Europeans - GSEC*)
Wenzlaff et al. 2005 (Detroit - USA)
Present study
χ25 = 5.32; p > 0.10

CYP2D6*4 0.071
0.070
0.078
0.054
0.145 ± 0.263
246
386
308
502
196
Leathart et al. 1998 (Los Angeles - USA)
Huang et al. 1999 (Ghana)
Wan et al. 2001 (Souhern California - USA)
Gaedigk et al. 2002 (Atlanta - USA)
Present study
χ24 = 16.98;p < 0.01
0.197
0.180
0.153
0.202
0.138
0.215 ± 0.249
211
408
360
305
105
114
Longuemaux et al. 1999 (France)
Gaedigk et al. 2002 (Atlanta - USA)
Scordo et al. 2004 (Italy)
Gajecka et al. 2005 (Poland)
Menoyo et al. 2006 (Spain)
Present study
χ25 = 5.34; p > 0.30

CYP2E1*5B 0.070
0.079 ± 0.197
114l
196
Wu et al. 1997 (Texas - USA)
Present study
χ21 = 0.086; p > 0.70
0.037
0.028
0.050 ± 0.152
1454
323
109
Garte et al. 2001 (Europeans - GSEC*)
Gajecka et al. 2005 (Poland)
Present study
χ22 = 1.36; p > 0.50

GSTM1*0 0.200
0.278
0.267
0.330
0.368 ± 0.480
120
259
479
114
190
Ford et al. 2000 (Columbia and New York - USA)
Millikan et al. 2000 (North Carolina - USA)
Garte et al. 2001 (Africans - GSEC*)
Dandara et al. 2002 (Tanzania)
Present study
χ24 = 13.03; p < 0.05
0.452
0.520
0.542
0.500
0.513
0.461 ± 0.500
168
369
395
1282
1981
115
Olshan et al. 2000 (North Carolina - USA)
Millikan et al. 2000 (North Carolina - USA)
Gudmundsdottir et al. 2001 (Iceland)
Taioli et al. 2003 (GSEC*)
Raimondi et al. 2005 (GSEC*)
Present study
χ25 = 5.78; p > 0.30

GSTT1*0 0.166
0.250
0.242 ± 0.424
259
114
€190
Millikan et al. 2000 (North Carolina - USA)
Dandara et al. 2002 (Tanzania)
Present study
χ22 = 5.55; p > 0.05
0.130
0.164
0.132
0.174 ± 0.381
168
373
478
115
Olshan et al. 2000 (North Carolina - USA)
Millikan et al. 2000 (North Carolina - USA)
Mitrunen et al. 2001 (Finnish)
Present study
χ23 = 3.01; p > 0.30

GSTP1*B 0.508
0.378 ± 0.332
247
196
Millikan et al. 2000 (North Carolina - USA)
Present study
χ21 = 7.53; p < 0.01
0.310
0.306
0.288
0.259
0.291
0.283 ± 0.339
189
368
1138
481
153
115
Longuemaux et al. 1999 (France)
Millikan et al. 2000 (North Carolina - USA)
Garte et al. 2001 (Europeans - GSEC*)
Mitrunen et al. 2001 (Finnish)
Dufour et al. 2005 (Italy)
Present study
χ25 = 2.99; p > 0.70

n = number of individuals; *GSEC - Genetic Susceptibility to Environmental Carcinogens Database.

Table 2.

Comparison between the present data and frequencies obtained in other Brazilian samples

Genes Frequencies
n
Authors (Brazilian region)
Frequencies
n
Authors (Brazilian region)
Afro-descendants Euro-descendants
CYP1A1*2A 0.305
0.301 ± 0.310
100
196
Kvitko et al. 2006 (South)
Present study
χ21 = 0.005;p > 0.90
0.106
0.173
0.152 ± 0.279
85
90
115
Torresan et al., 2008 (South)
Kvitko et al. 2006 (South)
Present study
χ22 = 1.64; p > 0.30

CYP2E1*5B 0.029
0.058
0.079 ± 0.197
136
86
196
Gattás et al. 2000 (Southeast)
Rossini et al. 2006 (Southeast)
Present study
χ22 = 3.71;p > 0.10
0.069
0.061
0.050 ± 0.152l
151
66
109
Rossini et al. 2006 (Southeast)
Torresan et al., 2008 (South)
Present study
χ22 = 0.40; p > 0.80

CYP2D6*4* - - - 0.188
0.215 ± 0.249
85
114
Torresan et al., 2008 (South)
Present study
χ21 = 0.21; p > 0.50

GSTM1*0 0.330
0.342
0.328
0.340
0.368 ± 0.480
117
272
137
100
190
Arruda et al. 1998 (Northeast)
Rossini et al. 2002 (Southeast)
Gattás et al. 2004 (Southeast)
Kvitko et al. 2006 (South)
Present study
χ24 = 0.72; p > 0.90
0.450
0.489
0.446
0.500
0.463
0.461 ± 0.500
130
319
233
90
95
115
Arruda et al. 1998 (Southeast)
Rossini et al. 2002 (Southeast)
Gattás et al. 2004 (Southeast)
Kvitko et al. 2006 (South)
Torresan et al., 2008 (South)
Present study
χ25 = 1.65; p > 0,80

GSTT1*0 0.190
0.257
0.263
0.280
0.242 ± 0.424
117
272
137
100
190
Arruda et al. 1998 (Northeast)
Rossini et al. 2002 (Southeast)
Gattás et al. 2004 (Southeast)
Kvitko et al. 2006 (South)
Present study
χ24 = 3.14; p > 0.50
0.185
0.215
0.223
0.211
0.295
0.174 ± 0.381
130
319
233
90
95
115
Arruda et al. 1998 (Southeast)
Rossini et al. 2002 (Southeast)
Gattás et al. 2004 (Southeast)
Kvitko et al. 2006 (South)
Torresan et al., 2008 (South)
Present study
χ25 = 5.53; p > 0,20

GSTP1*B 0.420
0.378 ± 0.332
100
196
Kvitko et al. 2006 (South)
Present study
χ21 = 0.50; p > 0.30
0.315
0.278
0.330
0.283 ± 0.339
319
90
85
115
Rossini et al. 2002 (Southeast)
Kvitko et al. 2006 (South)
Torresan et al., 2008 (South)
Present study
χ23 = 0.99;p > 0.80

n = number of individuals; * no data to compare.

In the comparison of our groups we noticed that there was a homogeneous distribution of the frequency of the genotypes GSTM1*0 and GSTT1*0 between the Afro-descendants and Euro-descendants; the differences of the frequencies of individuals with dominant and recessive genotypes, respectively, were statistically not significant (χ21 = 2.52; p ± 0.10 and χ21 = 1.97; p > 0.10). The analysis of molecular variance (AMOVA) for the genes CYP1A1*2A, CYP2D6*4, CYP2E1*5B, and GSTP1*B showed that 97.47% of the component of genetic variance is present within the ethnic groups and 2.53% (p < 10-4) between them. This lower value justify the lower value of the fixation index or co-ancestry coefficient (Fst = 0.02508 and 0.02565 for Afro- and Euro-descendants, respectively, and 0.02529 for the entire group) observed in this study. Fst, is computed as a measure of the population division effect and values up to 0.05 indicate negligible genetic differentiation (Adeyemo et al., 2005).

Biometabolism genes have been widely used in association studies, and they have contributed to the improvement in understanding the genetic basis of quantitative features (e.g., susceptibility to complex diseases and drug response). Such studies must consider the impact of the population stratification and miscegenation degree of the control population (Ardlie et al., 2002; Freedman et al., 2004) in order to prevent false associations (Zembrzuski et al., 2006). When genes with ethnic variation frequencies are evaluated in association studies (especially in complex diseases with multiple environmental and genetic factors), the high-risk group may present a low prevalence of the high-risk allele if other genetic or environmental risk factors predominate in that group (Ziv and Burchard, 2003).

The present report provides data that can contribute to the general profile of frequency and population dynamics of biometabolizing genes in groups of the Southern Brazilian population. These data constitute a valuable resource for the planning of future association studies in complex diseases like cancers.

Acknowledgments

Research support from CAPES, CNPq and Fundação Araucária are gratefully acknowledged. We sincerely thank Dr Luciane Regina Cavalli for suggestions.

Footnotes

Associate Editor: Francisco Mauro Salzano

References

  1. Abdel-Rahman S.Z., El-Zein R.A., Anwar W.A., Au W.W. A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett. 1996;107:229–233. doi: 10.1016/0304-3835(96)04832-x. [DOI] [PubMed] [Google Scholar]
  2. Adeyemo A.A., Chen G., Chen Y., Rotimi C. Genetic structure in four West African population groups. BMC Genet. 2005;6:38. doi: 10.1186/1471-2156-6-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amorim L.M., Lotsch P.F., Simão TDT de A., Gallo C.V., Pinto L.F. Analysis of CYP1A1 exon 7 polymorphisms by PCR-SSCP in a Brazilian population and description of two novel gene variations. Mutat Res. 2004;547:35–40. doi: 10.1016/j.mrfmmm.2003.11.004. [DOI] [PubMed] [Google Scholar]
  4. Ardlie K.G., Lunetta K.L., Seielstad M. Testing for population subdivision and association in four case-control studies. Am J Hum Genet. 2002;71:304–311. doi: 10.1086/341719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arruda V.R., Grignolli C.E., Gonçalves M.S., Soares M.C., Menezes R., Saad S.T.O., Costa F.F. Prevalence of homozygosity for the deleted alleles of glutatione S-transferase mu (GSTM1) and theta (GSTT1) among distinct ethnic groups from Brazil: Relevance to enviromental carcinogenesis? Clin Genet. 1998;54:210–214. doi: 10.1111/j.1399-0004.1998.tb04286.x. [DOI] [PubMed] [Google Scholar]
  6. Autrup H. Genetic polymorphisms in human xenobiotic metabolizing enzymes as suscetibility factors in toxic response. Mutat Res. 2000;464:65–76. doi: 10.1016/s1383-5718(99)00167-9. [DOI] [PubMed] [Google Scholar]
  7. Bignon J.D., Fernandez-Viña M.A. Protocols of the 12th Internacional Histocompatibility Workshop for typing of HLA class II alleles by DNA amplification by the polymerase chain reaction (PCR) and hybridization with sequence specific oligonucleotide probes (SSOP). In: Charron D., editor. HLA. Genetic Diversity of HLA: Functional and Medical Implications. Proceedings of the 12th International Histocompatibility Workshop and Conference; Paris: EDK; 1997. pp. 584–595. [Google Scholar]
  8. Carstensen U., Alexandrie A.K., Högstedt B., Rannug A., Bratt I., Hagmar L. Band T- lymphocyte micronuclei in chimney sweeps with respect to genetic polymorphism for CYP1A1 and GSTM1 (Class Mu) Mutat Res. 1993;289:187–195. doi: 10.1016/0027-5107(93)90069-r. [DOI] [PubMed] [Google Scholar]
  9. Dandara C., Sayi J., Masimirembwa C.M., Magimba A., Kaaya S., De Sommers K., Snyman J.R., Hasler J.A. Genetic polymorphism of cytochrome P450 1A1 (CYP1A1) and glutathione transferases (M1, T1 and P1) among Africans. Clin Chem Lab Med. 2002;40:952–957. doi: 10.1515/CCLM.2002.167. [DOI] [PubMed] [Google Scholar]
  10. Dufour C., Svahn J., Bacigalupo A., Longoni D., Varotto S., Iori A.P., Bagnasco F., Locasciulli A., Menna G., Ramenghi U., et al. Genetic polymorphisms of CYP3A4, GSTT1, GSTM1, GSTP1 and NQO1 and the risk of acquired idiopathic aplastic anemia in Caucasian patients. Haematologica. 2005;90:1027–1031. [PubMed] [Google Scholar]
  11. Enokida H., Shiina H., Urakami S., Igawa M., Ogishima T., Pookot D., Li L.C., Tabatabai Z.L., Kawahara M., Nakagawa M., et al. Ethnic grouprelated differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer. 2005;116:174–181. doi: 10.1002/ijc.21017. [DOI] [PubMed] [Google Scholar]
  12. Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:592–608. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ford J.G., Li Y., O'Sullivan M.M., Demopoulos R., Garte S., Taioli E., Brandt-Rauf P.W. Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis. 2000;21:1971–1975. doi: 10.1093/carcin/21.11.1971. [DOI] [PubMed] [Google Scholar]
  14. Freedman M.L., Reich D., Penney K.L., Mcdonald G.J., Mignault A.A., Patterson N., Gabriel S.B., Topol E.J., Smoller J.W., Pato C.N., et al. Assessing the impact of population stratification on genetic association studies. Nat Genet. 2004;36:388–393. doi: 10.1038/ng1333. [DOI] [PubMed] [Google Scholar]
  15. Gaedigk A., Bradford L.D., Marcucci K.A., Leeder J.S. Unique CYP2D6 activity distribution and genotype-phenotype discordance in black Americans. Clin Pharmacol Ther. 2002;72:76–89. doi: 10.1067/mcp.2002.125783. [DOI] [PubMed] [Google Scholar]
  16. Gajecka M., Rydzanicz M., Jaskula-Sztul R., Kujawski M., Szyfter W., Szyfter Z. CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma. Mutat Res. 2005;574:112–123. doi: 10.1016/j.mrfmmm.2005.01.027. [DOI] [PubMed] [Google Scholar]
  17. Garte S., Gaspari L., Alexandrie A.K., Ambrosone C., Autrup H., Autrup J.L., Baranova H., Bathum L., Benhamou S., Boffetta P., et al. Metabolic gene polymorphisms frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 2001;10:1239–1248. [PubMed] [Google Scholar]
  18. Gaspar P.A., Kvitko K., Papadopolis L.G., Hutz M.H., Weimer T.A. High frequency of CYP1A1*2C allele in Brazilian populations. Hum Biol. 2002;74:235–242. doi: 10.1353/hub.2002.0021. [DOI] [PubMed] [Google Scholar]
  19. Gattás G.J.F., Soares-Vieira J.A. Cytochrome P450-2E1 and glutathione S-transferase mu polymorphisms among Caucasians and Mulattoes from Brazil. Occup Med. 2000;50:508–511. doi: 10.1093/occmed/50.7.508. [DOI] [PubMed] [Google Scholar]
  20. Gattás G.J.F., Kato M., Soares-Vieira J.A., Siraque M.S., Kohler P., Gomes L., Rego M.A.V., Bydlowski S.P. Ethnicity and glutathione S-transferase (GSTM1/GSTT1) polymorphisms in a Brazilian population. Braz J Med Biol Res. 2004;34:451–458. doi: 10.1590/s0100-879x2004000400002. [DOI] [PubMed] [Google Scholar]
  21. Geisler S.A., Olshan A.F. GSTM1, GSTT1, and the risk of squamous cell carcinoma of the head and neck: A mini-huge review. Am J Epidemiol. 2001;154:95–103. doi: 10.1093/aje/154.2.95. [DOI] [PubMed] [Google Scholar]
  22. Gudmundsdottir K., Tryggvadottir L., Eyfjord J.E. GSTM1, GSTT1, and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 gene. Can Epidemiol Biom Prev. 2001;10:1169–1173. [PubMed] [Google Scholar]
  23. Harries L.W., Stubbins M.J., Forman D., Howard G.C., Wolf C.R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with suscetibility to bladder, testicular and prostate cancer. Carcinogenesis. 1997;18:641–644. doi: 10.1093/carcin/18.4.641. [DOI] [PubMed] [Google Scholar]
  24. Hatagima A., Marques C.F., Krieger H., Feitosa M.F. Glutatione S-transferase M1 (GSTM1) and T1 (GSTT1) polymorphisms in a Brazilian mixed population. Hum Biol. 2004;76:937–942. doi: 10.1353/hub.2005.0018. [DOI] [PubMed] [Google Scholar]
  25. Huang C.S., Shen C.Y., Chang K.J., Hsu S.M., Chern H.D. Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal Chinese women in Taiwan. Br J Cancer. 1999;80:1838–1843. doi: 10.1038/sj.bjc.6690608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hung R.J., Boffetta P., Brockmöller J., Butkiewicz D., Cascorbi I., Clapper M.L., Garte S., Haugen A., Hirvonen A., Anttila S., et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: A pooled analysis. Carcinogenesis. 2003;24:875–882. doi: 10.1093/carcin/bgg026. [DOI] [PubMed] [Google Scholar]
  27. Kato S., Shields P.G., Caporaso N.E., Sugimura H., Trivers G.E., Tucker M.A., Trump B.F., Weston A., Harris C.C. Cytochrome P450IIEI genetic polymorphisms racial variation and lung cancer risk. Cancer Res. 1992;56:6712–6715. [PubMed] [Google Scholar]
  28. Kittles R.A., Weiss K.M. Race, ancestry, and genes: Implications for defining disease risk. Annu Rev Genomics Hum Genet. 2003;4:33–67. doi: 10.1146/annurev.genom.4.070802.110356. [DOI] [PubMed] [Google Scholar]
  29. Kvitko K., Gaspar P.A., Torres A.R., Hutz M. CYP1A1, GSTM1, GSTT1 and GSTP1 polymorphisms in an Afro-brazilian group. Genet Mol Biol. 2006;29:613–616. [Google Scholar]
  30. Le Marchand L., Sivaraman L., Pierce L., Seifried A., Lum A., Wilkens L.R., Lau A.F. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res. 1998;58:4858–4863. [PubMed] [Google Scholar]
  31. Leathart J.B., London S.J., Steward A., Adams J.D., Idle J.R., Daly A.K. CYP2D6 phenotype-genotype relationships in African-Americans and Caucasians in Los Angeles. Pharmacogenetics. 1998;8:529–541. doi: 10.1097/00008571-199812000-00010. [DOI] [PubMed] [Google Scholar]
  32. Leichsenring A., Losi-Guembarovski R., Maciel M.E., Losi-Guembarovski A., Oliveira B.W., Ramos G., Cavalcanti T.C.S., Bicalho M.G., Cavalli I.J., Cólus I.M.S., et al. CYP1A1 and GSTP1 polymorphisms in an oral cancer case-control study. Braz J Med Biol Res. 2006;39:1569–1574. doi: 10.1590/s0100-879x2006001200007. [DOI] [PubMed] [Google Scholar]
  33. Longuemaux S., Deloménie C., Gallou C., Méjean A., Vincent-Viry M., Bouvier R., Droz D., Krishnamoorthy R., Galteau M., Junien C., et al. Candidate genetic modifiers of individual susceptibility to renal cell carcinoma:a study of polymorphic human xenobiotic-metabolizing enzymes. Cancer Res. 1999;59:2903–2908. [PubMed] [Google Scholar]
  34. Losi-Guembarovski R., D'arce L.P.G., Cóllus I.M.S. Glutathione S-transferase mu (GSTM1) null genotype in relation to gender, age and smoking status in a healthy Brazilian population. Genet Mol Biol. 2002;25:357–360. [Google Scholar]
  35. Losi-Guembarovski R., Cóllus I.M.S., De Menezes R.P., Poliseli F., Chaves V.N., Kuasne H., Leichsenring A., Guembarovski A.L., Oliveira B.W., Ramos G., et al. Lack of association among polymorphic xenobiotic-metabolizing enzyme genotypes and the occurrence and progression of oral carcinoma in a Brazilian population. Anticancer Res. 2008;28:1023–1028. [PubMed] [Google Scholar]
  36. Menoyo A., Del Rio E., Baiget M. Characterization of variant alleles of cytochrome CYP2D6 in a Spanish population. Cell Biochem Funct. 2006;24:381–385. doi: 10.1002/cbf.1258. [DOI] [PubMed] [Google Scholar]
  37. Millikan R., Pittman G., Tse C.K., Savitz D.A., Newman B., Bell D. Glutathione S-transferases M1, T1, and P1 and breast cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:567–573. [PubMed] [Google Scholar]
  38. Mitrunen K., Jourenkova N., Kataja V., Eskelinen M., Kosma V., Benhamou S., Vainio H., Uusitupa M., Hirvonen A. Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomarkers Prev. 2001;10:229–236. [PubMed] [Google Scholar]
  39. Olshan A.F., Weissler M.C., Watson M.A., Bell D.A. GSTM1, GSTT1, GSTP1,CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:185–191. [PubMed] [Google Scholar]
  40. Park S.K., Yoo K.Y., Lee S.J., Kim S.U., Ahn S.H., Noh D.Y., Choe K.J., Strickland P.T., Hirvonen A., Kang D. Alcohol comsumption, glutathione S-transferase M1 and T1 genetic polymorphisms and breast cancer risk. Pharmacogenetics. 2000;10:301–309. doi: 10.1097/00008571-200006000-00004. [DOI] [PubMed] [Google Scholar]
  41. Raimondi S., Boffetta P., Anttila S., Bröckmoller J., Butkiewicz D., Cascorbi I., Clapper M.L., Dragani T.A., Garte S., Gsur A., et al. Metabolic gene polymorphisms and lung cancer risk in non-smokers. An update of the GSEC study. Mutat Res. 2005;59:45–57. doi: 10.1016/j.mrfmmm.2005.06.002. [DOI] [PubMed] [Google Scholar]
  42. Rossini A., Rapozo D.C.M., Amorim L.M.F., Macedo J.M.B., Medina R., Neto J.F.N., Gallo C.V.M., Pinto L.F.R. Frequencies of GSTM1, GSTT1 and GSTP1 polymorphisms in a Brazilian population. Genet Mol Res. 2002;1:233–240. [PubMed] [Google Scholar]
  43. Rossini A., Soares-Lima S., Rapozo D.C.M., Faria M., Albano R.M., Ribeiro-Pinto L.F. CYP2A6 and CYP2E1 polymorphisms in a Brazilian population living in Rio de Janeiro. Braz J Med Biol Res. 2006;39:195–201. doi: 10.1590/s0100-879x2006000200005. [DOI] [PubMed] [Google Scholar]
  44. Scordo M.G., Caputi A.P., D'arrigo C., Fava G., Spina E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res. 2004;50:195–200. doi: 10.1016/j.phrs.2004.01.004. [DOI] [PubMed] [Google Scholar]
  45. Sobtia R.C., Al-Badrana A.I., Sharmaa S., Sharmab S.K., Krishanc A., Mohand H. Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet. 2005;156:68–73. doi: 10.1016/j.cancergencyto.2004.04.001. [DOI] [PubMed] [Google Scholar]
  46. Taioli E., Gaspari L., Benhamou S., Boffetta P., Brockmoller J., Butkiewicz D., Cascorbi I., Clapper M.L., Dolzan V., Haugen A., et al. Polymorphisms in CYP1A1, GSTM1, GSTT1and lung cancer below the age of 45 years. Int J Epidemiol. 2003;32:60–63. doi: 10.1093/ije/dyg001. [DOI] [PubMed] [Google Scholar]
  47. Torresan C., Oliveira M.M.C., Torrezan G.T., Oliveira S.F.V., Abuázar C.S., Losi-Guembarovski R., Lima R.S., Urban C.A., Cavalli I.J., Ribeiro E.M.S.F. Genetic polymorphisms in oestrogen metabolic pathway and breast cancer: A positive association with combined CYP/GST genotypes. Clin Exp Med. 2008;8:65–71. doi: 10.1007/s10238-008-0159-x. [DOI] [PubMed] [Google Scholar]
  48. Varela-Lema L., Taioli E., Ruano-Ravina A., Barros-Dios J.M., Anantharaman D., Boccia S., Bhisey R.A., Cadoni G., Capoluongo E., Chen C.J., et al. Meta- and pooled analysis of GSTM1 and CYP1A1 polymorphisms and oral and pharyngeal cancers: A HuGE-GSEC review. Genet Med. 2008;10:369–384. doi: 10.1097/GIM.0b013e3181770196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wan Y.J., Poland R.E., Han G., Konishi T., Zheng Y.P., Berman N., Lin K.M. Analysis of the CYP2D6 gene polymorphism and enzyme activity in African-Americans in Southern California. Pharmacogenetics. 2001;11:489–499. doi: 10.1097/00008571-200108000-00004. [DOI] [PubMed] [Google Scholar]
  50. Wenzlaff A.S., Cote M.L., Bock C.H., Land S.J., Santer S.K., Schwartz D.R., Schwartz A.G. CYP1A1 and CYP1B1 polymorphisms and risk of lung cancer among never smokers: A population-based study. Carcinogenesis. 2005;26:2207–2212. doi: 10.1093/carcin/bgi191. [DOI] [PubMed] [Google Scholar]
  51. Wrensch M.R., Miike R., Sison J.D., Kelsey K.T., Liu M., McMillan A., Quesenberry C., Wiencke J.K. CYP1A1 variants and smoking-related lung cancer in San Francisco Bay area Latins and African Americans. Int J Cancer. 2005;113:7–141. doi: 10.1002/ijc.20537. [DOI] [PubMed] [Google Scholar]
  52. Wu X., Shi H., Jiang H., Kemp B., Hong W.K., Delclos G.L., Spitz M.R. Associations between cytochrome P4502E1 genotype, mutagen sensitivity, cigarette smoking and suscetibility to lung cancer. Carcinogenesis. 1997;18:967–973. doi: 10.1093/carcin/18.5.967. [DOI] [PubMed] [Google Scholar]
  53. Yang C.X., Matsuo K., Wang Z.M., Tajima K. Phase I/II enzyme gene polymorphisms and esophageal cancer risk: A meta-analysis of the literature. World J Gastroenterol. 2005;11:2531–2538. doi: 10.3748/wjg.v11.i17.2531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zembrzuski V.M., Callegari-Jacques S.M., Hutz M.H. Application of an African Ancestry Index as a genomic control approach in a Brazilian population. Ann Hum Genet. 2006;70:822–828. doi: 10.1111/j.1469-1809.2006.00270.x. [DOI] [PubMed] [Google Scholar]
  55. Ziv E., Burchard E.G. Human population structure and genetic association studies. Pharmacogenomics. 2003;4:431–441. doi: 10.1517/phgs.4.4.431.22758. [DOI] [PubMed] [Google Scholar]

Internet Resources

  1. GDB - Genome Data Bank. [October 5, 2005]. Available from: www.gdb.org.

Articles from Genetics and Molecular Biology are provided here courtesy of Sociedade Brasileira de Genética

RESOURCES