Abstract
Most computer methods that quantify coronary artery disease from angiograms are designed to analyze frames recorded during the end-diastolic portion of the cardiac cycle. The purpose of this study was to determine if end diastole is the best portion of the cardiac cycle to sample, or if other sampling schemes produce more precise and/or reproducible estimates of coronary disease. 20 cinecoronary angiograms were selected at random from a controlled clinical trial testing the effects of plasma lipid lowering on atherosclerosis. Sampling schemes included sequential and random sampling of two to five frames within the complete cardiac cycle, systole, and diastole. Three vessel measures and percent stenosis were evaluated for each sampling scheme. From the sampling experiment, it was determined that sampling sequentially end diastole yielded the most precise estimates (i.e., exhibiting minimum variability within a cycle) of the vessel measures. With regard to reproducibility (i.e., similar values across cycles), sampling randomly within the cycle was best. Overall, the average diameter of a vessel segment was the most precise and the most reproducible of the measures. Sample size calculations are given for each of these measures under the best sampling scheme.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arntzenius A. C., Kromhout D., Barth J. D., Reiber J. H., Bruschke A. V., Buis B., van Gent C. M., Kempen-Voogd N., Strikwerda S., van der Velde E. A. Diet, lipoproteins, and the progression of coronary atherosclerosis. The Leiden Intervention Trial. N Engl J Med. 1985 Mar 28;312(13):805–811. doi: 10.1056/NEJM198503283121301. [DOI] [PubMed] [Google Scholar]
- Blankenhorn D. H., Johnson R. L., Nessim S. A., Azen S. P., Sanmarco M. E., Selzer R. H. The Cholesterol Lowering Atherosclerosis Study (CLAS): design, methods, and baseline results. Control Clin Trials. 1987 Dec;8(4):356–387. doi: 10.1016/0197-2456(87)90156-5. [DOI] [PubMed] [Google Scholar]
- Blankenhorn D. H., Nessim S. A., Johnson R. L., Sanmarco M. E., Azen S. P., Cashin-Hemphill L. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA. 1987 Jun 19;257(23):3233–3240. [PubMed] [Google Scholar]
- Brown B. G., Bolson E., Frimer M., Dodge H. T. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation. 1977 Feb;55(2):329–337. doi: 10.1161/01.cir.55.2.329. [DOI] [PubMed] [Google Scholar]
- Cashin W. L., Brooks S. H., Blankenhorn D. H., Selzer R. H., Sanmarco M. E., Benjauthrit B. Computerized edge tracking and lesion measurement in coronary angiograms. A pilot study comparing smokers with non-smokers. Atherosclerosis. 1984 Sep;52(3):295–300. doi: 10.1016/0021-9150(84)90059-5. [DOI] [PubMed] [Google Scholar]
- Crawford D. W., Beckenbach E. S., Blankenhorn D. H., Selzer R. H., Brooks S. H. Grading of coronary atherosclerosis. Comparison of a modified IAP visual grading method and a new quantitative angiographic technique. Atherosclerosis. 1974 Mar-Apr;19(2):231–241. doi: 10.1016/0021-9150(74)90058-6. [DOI] [PubMed] [Google Scholar]
- Ellis S., Sanders W., Goulet C., Miller R., Cain K. C., Lesperance J., Bourassa M. G., Alderman E. L. Optimal detection of the progression of coronary artery disease: comparison of methods suitable for risk factor intervention trials. Circulation. 1986 Dec;74(6):1235–1242. doi: 10.1161/01.cir.74.6.1235. [DOI] [PubMed] [Google Scholar]
- Gould K. L. Quantification of coronary artery stenosis in vivo. Circ Res. 1985 Sep;57(3):341–353. doi: 10.1161/01.res.57.3.341. [DOI] [PubMed] [Google Scholar]
- Jaques P., DiBianca F., Pizer S., Kohout F., Lifshitz L., Delany D. Quantitative digital fluorography. Computer vs. human estimation of vascular stenoses. Invest Radiol. 1985 Jan-Feb;20(1):45–52. [PubMed] [Google Scholar]
- Reiber J. H., Serruys P. W., Kooijman C. J., Wijns W., Slager C. J., Gerbrands J. J., Schuurbiers J. C., den Boer A., Hugenholtz P. G. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation. 1985 Feb;71(2):280–288. doi: 10.1161/01.cir.71.2.280. [DOI] [PubMed] [Google Scholar]
- Sanz M. L., Mancini J., LeFree M. T., Mickelson J. K., Starling M. R., Vogel R. A., Topol E. J. Variability of quantitative digital subtraction coronary angiography before and after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1987 Jul 1;60(1):55–60. doi: 10.1016/0002-9149(87)90984-2. [DOI] [PubMed] [Google Scholar]
- Spears J. R., Sandor T., Als A. V., Malagold M., Markis J. E., Grossman W., Serur J. R., Paulin S. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation. 1983 Aug;68(2):453–461. doi: 10.1161/01.cir.68.2.453. [DOI] [PubMed] [Google Scholar]
- Spears J. R., Sandor T., Als A. V., Malagold M., Markis J. E., Grossman W., Serur J. R., Paulin S. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation. 1983 Aug;68(2):453–461. doi: 10.1161/01.cir.68.2.453. [DOI] [PubMed] [Google Scholar]
- Tomoike H., Ootsubo H., Sakai K., Kikuchi Y., Nakamura M. Continuous measurement of coronary artery diameter in situ. Am J Physiol. 1981 Jan;240(1):H73–H79. doi: 10.1152/ajpheart.1981.240.1.H73. [DOI] [PubMed] [Google Scholar]
- Vatner S. F., Pasipoularides A., Mirsky I. Measurement of arterial pressure-dimension relationships in conscious animals. Ann Biomed Eng. 1984;12(5):521–534. doi: 10.1007/BF02363921. [DOI] [PubMed] [Google Scholar]