Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Feb;83(2):558–564. doi: 10.1172/JCI113918

Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle.

B Kiens 1, H Lithell 1
PMCID: PMC303715  PMID: 2643634

Abstract

The influence of training-induced adaptations in skeletal muscle tissue on lipoprotein metabolism was investigated in six healthy men. The knee extensors were studied at rest and during exercise after 8 wk of dynamic exercise training of the knee extensors of one leg, while the other leg served as a control. The trained and nontrained thighs were investigated on different occasions. In the trained knee extensors, muscle (m) lipoprotein lipase activity (LPLA) was 70 +/- 29% higher compared with the nontrained (P less than 0.05), and correlated positively with the capillary density (r = 0.84). At rest there was a markedly higher arteriovenous (A-V) VLDL triacylglycerol (TG) difference over the trained thigh, averaging 55 mumol/liter (range 30-123), than over the nontrained, averaging 30 mumol/liter (4-72). In addition to the higher LPLA and VLDL-TG uptake in the trained thigh, a higher production of HDL cholesterol (C) and HDL2-C was also observed (P less than 0.05). Positive correlations between m-LPLA and A-V differences of VLDL-TG (r = 0.90; P less than 0.05) were observed only in the trained thigh. During exercise with the trained thigh the venous concentration of HDL2-C was invariably higher than the arterial, and after 110 min of exercise a production of 88 mumol/min (54-199) of HDL2-C was revealed. Even though a consistent degradation of VLDL-TG was not found during exercise, the total production of HDL-C across the trained and nontrained thigh, estimated from A-V differences times venous blood flow for the whole exercise period, correlated closely with the total estimated degradation of VLDL-TG (r = 0.91). At the end of 2 h of exercise m-LPLA did not differ from the preexercise value in either the nontrained or the trained muscle. We conclude that changes in the lipoprotein profile associated with endurance training to a large extent are explainable by training-induced adaptations in skeletal muscle tissue.

Full text

PDF
558

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P., Adams R. P., Sjøgaard G., Thorboe A., Saltin B. Dynamic knee extension as model for study of isolated exercising muscle in humans. J Appl Physiol (1985) 1985 Nov;59(5):1647–1653. doi: 10.1152/jappl.1985.59.5.1647. [DOI] [PubMed] [Google Scholar]
  2. Andersen P. Capillary density in skeletal muscle of man. Acta Physiol Scand. 1975 Oct;95(2):203–205. doi: 10.1111/j.1748-1716.1975.tb10043.x. [DOI] [PubMed] [Google Scholar]
  3. Andersen P., Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233–249. doi: 10.1113/jphysiol.1985.sp015794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arner P., Bolinder J., Engfeldt P., Lithell H. The relationship between the basal lipolytic and lipoprotein lipase activities in human adipose tissue. Int J Obes. 1983;7(2):167–172. [PubMed] [Google Scholar]
  5. Christensen N. J., Vestergaard P., Sørensen T., Rafaelsen O. J. Cerebrospinal fluid adrenaline and noradrenaline in depressed patients. Acta Psychiatr Scand. 1980 Feb;61(2):178–182. doi: 10.1111/j.1600-0447.1980.tb00577.x. [DOI] [PubMed] [Google Scholar]
  6. Cryer A. Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. Int J Biochem. 1981;13(5):525–541. doi: 10.1016/0020-711x(81)90177-4. [DOI] [PubMed] [Google Scholar]
  7. Gordon T., Castelli W. P., Hjortland M. C., Kannel W. B., Dawber T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977 May;62(5):707–714. doi: 10.1016/0002-9343(77)90874-9. [DOI] [PubMed] [Google Scholar]
  8. Jacobs I., Lithell H., Karlsson J. Dietary effects on glycogen and lipoprotein lipase activity in skeletal muscle in man. Acta Physiol Scand. 1982 May;115(1):85–90. doi: 10.1111/j.1748-1716.1982.tb07048.x. [DOI] [PubMed] [Google Scholar]
  9. Kiens B., Jörgensen I., Lewis S., Jensen G., Lithell H., Vessby B., Hoe S., Schnohr P. Increased plasma HDL-cholesterol and apo A-1 in sedentary middle-aged men after physical conditioning. Eur J Clin Invest. 1980 Jun;10(3):203–209. doi: 10.1111/j.1365-2362.1980.tb00021.x. [DOI] [PubMed] [Google Scholar]
  10. Kiens B., Lithell H., Vessby B. Further increase in high density lipoprotein in trained males after enhanced training. Eur J Appl Physiol Occup Physiol. 1984;52(4):426–430. doi: 10.1007/BF00943374. [DOI] [PubMed] [Google Scholar]
  11. Lithell H., Boberg J. Determination of lipoprotein-lipase activity in human skeletal muscle tissue. Biochim Biophys Acta. 1978 Jan 27;528(1):58–68. doi: 10.1016/0005-2760(78)90052-8. [DOI] [PubMed] [Google Scholar]
  12. Lithell H., Boberg J., Hellsing K., Lundqvist G., Vessby B. Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in the fasting and the fed states. Atherosclerosis. 1978 May;30(1):89–94. doi: 10.1016/0021-9150(78)90155-7. [DOI] [PubMed] [Google Scholar]
  13. Lithell H., Cedermark M., Fröberg J., Tesch P., Karlsson J. Increase of lipoprotein-lipase activity in skeletal muscle during heavy exercise. Relation to epinephrine excretion. Metabolism. 1981 Nov;30(11):1130–1134. doi: 10.1016/0026-0495(81)90059-7. [DOI] [PubMed] [Google Scholar]
  14. Lithell H., Hellsing K., Lundqvist G., Malmberg P. Lipoprotein-lipase activity of human skeletal-muscle and adipose tissue after intensive physical exercise. Acta Physiol Scand. 1979 Mar;105(3):312–315. doi: 10.1111/j.1748-1716.1979.tb06346.x. [DOI] [PubMed] [Google Scholar]
  15. Lithell H., Jacobs I., Vessby B., Hellsing K., Karlsson J. Decrease of lipoprotein lipase activity in skeletal muscle in man during a short-term carbohydrate-rich dietary regime. With special reference to HDL-cholesterol, apolipoprotein and insulin concentrations. Metabolism. 1982 Oct;31(10):994–998. doi: 10.1016/0026-0495(82)90141-x. [DOI] [PubMed] [Google Scholar]
  16. Lithell H., Orlander J., Schéle R., Sjödin B., Karlsson J. Changes in lipoprotein-lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta Physiol Scand. 1979 Nov;107(3):257–261. doi: 10.1111/j.1748-1716.1979.tb06471.x. [DOI] [PubMed] [Google Scholar]
  17. Lithell H., Schéle R., Vessby B., Jacobs I. Lipoproteins, lipoprotein lipase, and glycogen after prolonged physical activity. J Appl Physiol Respir Environ Exerc Physiol. 1984 Sep;57(3):698–702. doi: 10.1152/jappl.1984.57.3.698. [DOI] [PubMed] [Google Scholar]
  18. Nikkilä E. A., Taskinen M. R., Rehunen S., Härkönen M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism. 1978 Nov;27(11):1661–1667. doi: 10.1016/0026-0495(78)90288-3. [DOI] [PubMed] [Google Scholar]
  19. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  20. Nye E. R., Carlson K., Kirstein P., Rössner S. Changes in high density lipoprotein subfractions and other lipoproteins by exercise. Clin Chim Acta. 1981 Jun 2;113(1):51–57. doi: 10.1016/0009-8981(81)90439-3. [DOI] [PubMed] [Google Scholar]
  21. Patsch J. R., Gotto A. M., Jr, Olivercrona T., Eisenberg S. Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4519–4523. doi: 10.1073/pnas.75.9.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quinn D., Shirai K., Jackson R. L. Lipoprotein lipase: mechanism of action and role in lipoprotein metabolism. Prog Lipid Res. 1983;22(1):35–78. doi: 10.1016/0163-7827(83)90003-6. [DOI] [PubMed] [Google Scholar]
  23. Scow R. O., Desnuelle P., Verger R. Lipolysis and lipid movement in a membrane model. Action of lipoprotein lipase. J Biol Chem. 1979 Jul 25;254(14):6456–6463. [PubMed] [Google Scholar]
  24. Svedenhag J., Lithell H., Juhlin-Dannfelt A., Henriksson J. Increase in skeletal muscle lipoprotein lipase following endurance training in man. Atherosclerosis. 1983 Nov;49(2):203–207. doi: 10.1016/0021-9150(83)90198-3. [DOI] [PubMed] [Google Scholar]
  25. Vessby B., Boberg J., Gustafsson I. B., Karlström B., Lithell H., Ostlund-Linqvist A. M. Reduction of high density lipoprotein cholesterol and apoliproprotein A-I concentrations by a lipid-lowering diet. Atherosclerosis. 1980 Jan;35(1):21–27. doi: 10.1016/0021-9150(80)90024-6. [DOI] [PubMed] [Google Scholar]
  26. Wood P. D., Haskell W. L. The effect of exercise on plasma high density lipoproteins. Lipids. 1979 Apr;14(4):417–427. doi: 10.1007/BF02533428. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES