Abstract
HIV-1 infection in vitro of normal bone marrow mononuclear cells (BMMC) depleted of mature T cells was studied. BMMC depleted of either CD3, CD2, or both could replicate HIV-1 irrespective of the presence of macrophages/monocytes. Infected bone marrow cells were shown to differentiate during the culture into CD3+, CD4+, CD8+, and CD1+ cells, whereas noninfected BMMC gave rise to CD3+, CD4+, and CD8+ cells. Moreover, 9-14% of the cells also expressed the viral proteins p24 and gp120 on their surface. Double staining studies revealed that 72 and 83% of the CD4+ cells expressed the gp120 and p24, respectively, suggesting that virus replication occurred in CD4+ cells. T cell colony growth from infected BMMC, either unfractionated or depleted of mature T cells, was impaired in a time-dependent manner, and the differentiation capacity of T cell precursors was abnormal. Colony cells displayed an immature cell phenotype (CD1+ cells) and the viral proteins gp120 and/or p24 could also be detected on CD1+ cells. In addition, pooled colony cells derived from infected CD2- and CD3-depleted BMMC could infect normal mitogen-activated lymphocytes in coculture experiments. These findings strongly suggest that HIV-1 can infect immature bone marrow T cells and be transmitted to the progeny, but the massive viral replication occurs only when the cells differentiate toward CD4+ cells.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):868–871. doi: 10.1126/science.6189183. [DOI] [PubMed] [Google Scholar]
- Bentaboulet M., Allouche M., Tsapis A., Jasmin C., Georgoulias V. Characterization of interleukin-2 receptors expressed on acute leukemic B cells. Blood. 1987 Oct;70(4):954–959. [PubMed] [Google Scholar]
- Claësson M. H., Rodger M. B., Johnson G. R., Whittingham S., Metcalf D. Colony formation by human T lymphocytes in agar medium. Clin Exp Immunol. 1977 Jun;28(3):526–534. [PMC free article] [PubMed] [Google Scholar]
- Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- Fauci A. S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. doi: 10.1126/science.3277274. [DOI] [PubMed] [Google Scholar]
- Gartner S., Markovits P., Markovitz D. M., Betts R. F., Popovic M. Virus isolation from and identification of HTLV-III/LAV-producing cells in brain tissue from a patient with AIDS. JAMA. 1986 Nov 7;256(17):2365–2371. [PubMed] [Google Scholar]
- Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986 Jul 11;233(4760):215–219. doi: 10.1126/science.3014648. [DOI] [PubMed] [Google Scholar]
- Gendelman H. E., Orenstein J. M., Martin M. A., Ferrua C., Mitra R., Phipps T., Wahl L. A., Lane H. C., Fauci A. S., Burke D. S. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med. 1988 Apr 1;167(4):1428–1441. doi: 10.1084/jem.167.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgoulias V., Marion S., Consolini R., Jasmin C. Characterization of normal peripheral blood T- and B-cell colony-forming cells: growth factors(s) and accessory cell requirements for their in vitro proliferation. Cell Immunol. 1985 Jan;90(1):1–13. doi: 10.1016/0008-8749(85)90163-7. [DOI] [PubMed] [Google Scholar]
- Gyorkey F., Melnick J. L., Gyorkey P. Human immunodeficiency virus in brain biopsies of patients with AIDS and progressive encephalopathy. J Infect Dis. 1987 May;155(5):870–876. doi: 10.1093/infdis/155.5.870. [DOI] [PubMed] [Google Scholar]
- Harper M. E., Marselle L. M., Gallo R. C., Wong-Staal F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Feb;83(3):772–776. doi: 10.1073/pnas.83.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984 Dec 20;312(5996):767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
- Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984 Dec 20;312(5996):767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
- Krohn K., Robey W. G., Putney S., Arthur L., Nara P., Fischinger P., Gallo R. C., Wong-Staal F., Ranki A. Specific cellular immune response and neutralizing antibodies in goats immunized with native or recombinant envelope proteins derived from human T-lymphotropic virus type IIIB and in human immunodeficiency virus-infected men. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4994–4998. doi: 10.1073/pnas.84.14.4994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lunardi Iskandar Y., Georgoulias V., Rozenbaum W., Vittecoq D., Meyer P., Gentilini M., Jasmin C. AIDS and lymphadenopathy syndrome (LAS) patients display similar abnormal in vitro proliferation and differentiation of T-colony forming cells (T-CFC). Cancer Detect Prev Suppl. 1987;1:525–533. [PubMed] [Google Scholar]
- Lunardi-Iskandar Y., Georgoulias V., Allouche M., Rozenbaum W., Klatzmann D., Coll M. C., Meyer P., Gluckman J. C., Gentilini M., Jasmin C. Abnormal in vitro proliferation and differentiation of T colony forming cells in AIDS patients and clinically normal male homosexuals. Clin Exp Immunol. 1985 May;60(2):285–293. [PMC free article] [PubMed] [Google Scholar]
- Lunardi-Iskandar Y., Georgoulias V., Rozenbaum W., Klatzmann D., Coll M. C., Meyer P., Gentilini M., Gluckman J. C., Jasmin C. Abnormal in vitro proliferation and differentiation of T colony-forming cells in patients with lymphadenopathy syndrome. Blood. 1986 Apr;67(4):1063–1069. [PubMed] [Google Scholar]
- Lunardi-Iskandar Y., Georgoulias V., Vittecoq D., Nugeyre M. T., Ammar A., Clemenceau C., Barre-Sinoussi F., Chermann J. C., Schwartzenberg L., Jasmin C. Peripheral blood adherent cells from AIDS patients inhibit normal T-colony growth through decreased expression of interleukin 2-receptors and production of interleukin 2. Leuk Res. 1987;11(8):753–760. doi: 10.1016/0145-2126(87)90013-0. [DOI] [PubMed] [Google Scholar]
- Mann D. L., Lasane F., Popovic M., Arthur L. O., Robey W. G., Blattner W. A., Newman M. J. HTLV-III large envelope protein (gp120) suppresses PHA-induced lymphocyte blastogenesis. J Immunol. 1987 Apr 15;138(8):2640–2644. [PubMed] [Google Scholar]
- McDougal J. S., Kennedy M. S., Sligh J. M., Cort S. P., Mawle A., Nicholson J. K. Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science. 1986 Jan 24;231(4736):382–385. doi: 10.1126/science.3001934. [DOI] [PubMed] [Google Scholar]
- McDougal J. S., Nicholson J. K., Cross G. D., Cort S. P., Kennedy M. S., Mawle A. C. Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. J Immunol. 1986 Nov 1;137(9):2937–2944. [PubMed] [Google Scholar]
- Montagnier L., Gruest J., Chamaret S., Dauguet C., Axler C., Guétard D., Nugeyre M. T., Barré-Sinoussi F., Chermann J. C., Brunet J. B. Adaptation of lymphadenopathy associated virus (LAV) to replication in EBV-transformed B lymphoblastoid cell lines. Science. 1984 Jul 6;225(4657):63–66. doi: 10.1126/science.6328661. [DOI] [PubMed] [Google Scholar]
- Pahwa S., Pahwa R., Saxinger C., Gallo R. C., Good R. A. Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8198–8202. doi: 10.1073/pnas.82.23.8198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petito C. K., Cho E. S., Lemann W., Navia B. A., Price R. W. Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol. 1986 Nov;45(6):635–646. doi: 10.1097/00005072-198611000-00003. [DOI] [PubMed] [Google Scholar]
- Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
- Reinherz E. L., Schlossman S. F. The differentiation and function of human T lymphocytes. Cell. 1980 Apr;19(4):821–827. doi: 10.1016/0092-8674(80)90072-0. [DOI] [PubMed] [Google Scholar]
- Salahuddin S. Z., Rose R. M., Groopman J. E., Markham P. D., Gallo R. C. Human T lymphotropic virus type III infection of human alveolar macrophages. Blood. 1986 Jul;68(1):281–284. [PubMed] [Google Scholar]
- Wahren B., Morfeldt-Månsson L., Biberfeld G., Moberg L., Sönnerborg A., Ljungman P., Werner A., Kurth R., Gallo R., Bolognesi D. Characteristics of the specific cell-mediated immune response in human immunodeficiency virus infection. J Virol. 1987 Jun;61(6):2017–2023. doi: 10.1128/jvi.61.6.2017-2023.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiley C. A., Schrier R. D., Nelson J. A., Lampert P. W., Oldstone M. B. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7089–7093. doi: 10.1073/pnas.83.18.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkelstein A., Klein R. S., Evans T. L., Dixon B. W., Holder W. L., Weaver L. D. Defective in vitro T cell colony formation in the acquired immunodeficiency syndrome. J Immunol. 1985 Jan;134(1):151–156. [PubMed] [Google Scholar]
- Yarchoan R., Redfield R. R., Broder S. Mechanisms of B cell activation in patients with acquired immunodeficiency syndrome and related disorders. Contribution of antibody-producing B cells, of Epstein-Barr virus-infected B cells, and of immunoglobulin production induced by human T cell lymphotropic virus, type III/lymphadenopathy-associated virus. J Clin Invest. 1986 Aug;78(2):439–447. doi: 10.1172/JCI112595. [DOI] [PMC free article] [PubMed] [Google Scholar]
