Abstract
The pulmonary surfactant proteins SP-B (8,000 D) and SP-C (4,000 D) accelerate surface film formation by surfactant phospholipids. We used cDNA probes to examine regulation of these proteins in human fetal lung. The mRNAs were detectable at 13 wk gestation and increased to approximately 50% (SP-B) and approximately 15% (SP-C) of adult levels at 24 wk. The mRNAs were detected only in lung of 11 dog tissues examined. When human fetal lung was cultured as explants without hormones, SP-B mRNA increased and SP-C mRNA decreased. Exposure for 48 h to glucocorticoids, but not other steroids, increased both SP-B mRNA (approximately 4-fold) and SP-C mRNA (approximately 30-fold) vs. controls. Half-maximal stimulation occurred with 1 nM dexamethasone and 300 nM cortisol for SP-B mRNA and at three- to fivefold higher concentrations for SP-C mRNA. Both stimulation and its reversal on removal of hormone were more rapid for SP-B than for SP-C. Terbutaline and forskolin increased SP-B mRNA but not SP-C mRNA. Levels of both mRNAs were much higher in type II cells than fibroblasts prepared from explants. Thus, the genes for SP-B and SP-C are expressed in vivo before synthesis of both SP-A (28,000-36,000 D) and surfactant lipids. Glucocorticoid induction of SP-B and SP-C mRNAs in type II cells appears to be receptor mediated but may involve different mechanisms.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramovitz M., Branchaud C. L., Murphy B. E. Cortisol-cortisone interconversion in human fetal lung: contrasting results using explant and monolayer cultures suggest that 11 beta-hydroxysteroid dehydrogenase (EC 1.1.1.146) comprises two enzymes. J Clin Endocrinol Metab. 1982 Mar;54(3):563–568. doi: 10.1210/jcem-54-3-563. [DOI] [PubMed] [Google Scholar]
- Ballard P. L., Ballard R. A. Cytoplasmic receptor for glucocorticoids in lung of the human fetus and neonate. J Clin Invest. 1974 Feb;53(2):477–486. doi: 10.1172/JCI107581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballard P. L., Ballard R. A., Gonzales L. K., Huemmelink R., Wilson C. M., Gross I. Corticosteroid binding by fetal rat and rabbit lung in organ culture. J Steroid Biochem. 1984 Aug;21(2):117–126. doi: 10.1016/0022-4731(84)90371-6. [DOI] [PubMed] [Google Scholar]
- Ballard P. L., Ertsey R., Gonzales L. K., Liley H. G., Williams M. C. Isolation and characterization of differentiated alveolar type II cells from fetal human lung. Biochim Biophys Acta. 1986 Sep 4;883(2):335–344. doi: 10.1016/0304-4165(86)90326-0. [DOI] [PubMed] [Google Scholar]
- Ballard P. L., Hawgood S., Liley H., Wellenstein G., Gonzales L. W., Benson B., Cordell B., White R. T. Regulation of pulmonary surfactant apoprotein SP 28-36 gene in fetal human lung. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9527–9531. doi: 10.1073/pnas.83.24.9527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballard P. L. Hormones and lung maturation. Monogr Endocrinol. 1986;28:1–354. [PubMed] [Google Scholar]
- Ballard P. L., Mason R. J., Douglas W. H. Glucocorticoid binding by isolated lung cells. Endocrinology. 1978 May;102(5):1570–1575. doi: 10.1210/endo-102-5-1570. [DOI] [PubMed] [Google Scholar]
- Emrie P. A., Jones C., Hofmann T., Fisher J. H. The coding sequence for the human 18,000-dalton hydrophobic pulmonary surfactant protein is located on chromosome 2 and identifies a restriction fragment length polymorphism. Somat Cell Mol Genet. 1988 Jan;14(1):105–110. doi: 10.1007/BF01535054. [DOI] [PubMed] [Google Scholar]
- Glasser S. W., Korfhagen T. R., Weaver T. E., Clark J. C., Pilot-Matias T., Meuth J., Fox J. L., Whitsett J. A. cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal). J Biol Chem. 1988 Jan 5;263(1):9–12. [PubMed] [Google Scholar]
- Glasser S. W., Korfhagen T. R., Weaver T., Pilot-Matias T., Fox J. L., Whitsett J. A. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe). Proc Natl Acad Sci U S A. 1987 Jun;84(12):4007–4011. doi: 10.1073/pnas.84.12.4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzales L. W., Ballard P. L., Ertsey R., Williams M. C. Glucocorticoids and thyroid hormones stimulate biochemical and morphological differentiation of human fetal lung in organ culture. J Clin Endocrinol Metab. 1986 Apr;62(4):678–691. doi: 10.1210/jcem-62-4-678. [DOI] [PubMed] [Google Scholar]
- Gross I., Wilson C. M., Ingleson L. D., Brehier A., Rooney S. A. Fetal lung in organ culture. III. Comparison of dexamethasone, thyroxine, and methylxanthines. J Appl Physiol Respir Environ Exerc Physiol. 1980 May;48(5):872–877. doi: 10.1152/jappl.1980.48.5.872. [DOI] [PubMed] [Google Scholar]
- Gunning P., Ponte P., Okayama H., Engel J., Blau H., Kedes L. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol Cell Biol. 1983 May;3(5):787–795. doi: 10.1128/mcb.3.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawgood S., Benson B. J., Schilling J., Damm D., Clements J. A., White R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption. Proc Natl Acad Sci U S A. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs K. A., Phelps D. S., Steinbrink R., Fisch J., Kriz R., Mitsock L., Dougherty J. P., Taeusch H. W., Floros J. Isolation of a cDNA clone encoding a high molecular weight precursor to a 6-kDa pulmonary surfactant-associated protein. J Biol Chem. 1987 Jul 15;262(20):9808–9811. [PubMed] [Google Scholar]
- Kornberg A. DNA replication. J Biol Chem. 1988 Jan 5;263(1):1–4. [PubMed] [Google Scholar]
- Liley H. G., Hawgood S., Wellenstein G. A., Benson B., White R. T., Ballard P. L. Surfactant protein of molecular weight 28,000-36,000 in cultured human fetal lung: cellular localization and effect of dexamethasone. Mol Endocrinol. 1987 Mar;1(3):205–215. doi: 10.1210/mend-1-3-205. [DOI] [PubMed] [Google Scholar]
- Liley H. G., White R. T., Benson B. J., Ballard P. L. Glucocorticoids both stimulate and inhibit production of pulmonary surfactant protein A in fetal human lung. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9096–9100. doi: 10.1073/pnas.85.23.9096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson C. R., Chen C., Boggaram V., Zacharias C., Snyder J. M. Regulation of the synthesis of the major surfactant apoprotein in fetal rabbit lung tissue. J Biol Chem. 1986 Jul 25;261(21):9938–9943. [PubMed] [Google Scholar]
- Odom M. J., Snyder J. M., Mendelson C. R. Adenosine 3',5'-monophosphate analogs and beta-adrenergic agonists induce the synthesis of the major surfactant apoprotein in human fetal lung in vitro. Endocrinology. 1987 Sep;121(3):1155–1163. doi: 10.1210/endo-121-3-1155. [DOI] [PubMed] [Google Scholar]
- Phelps D. S., Floros J. Localization of surfactant protein synthesis in human lung by in situ hybridization. Am Rev Respir Dis. 1988 Apr;137(4):939–942. doi: 10.1164/ajrccm/137.4.939. [DOI] [PubMed] [Google Scholar]
- Possmayer F. A proposed nomenclature for pulmonary surfactant-associated proteins. Am Rev Respir Dis. 1988 Oct;138(4):990–998. doi: 10.1164/ajrccm/138.4.990. [DOI] [PubMed] [Google Scholar]
- Revak S. D., Merritt T. A., Degryse E., Stefani L., Courtney M., Hallman M., Cochrane C. G. Use of human surfactant low molecular weight apoproteins in the reconstitution of surfactant biologic activity. J Clin Invest. 1988 Mar;81(3):826–833. doi: 10.1172/JCI113391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder J. M., Mendelson C. R. Insulin inhibits the accumulation of the major lung surfactant apoprotein in human fetal lung explants maintained in vitro. Endocrinology. 1987 Apr;120(4):1250–1257. doi: 10.1210/endo-120-4-1250. [DOI] [PubMed] [Google Scholar]
- Sullivan K. A., Liao Y. C., Alborzi A., Beiderman B., Chang F. H., Masters S. B., Levinson A. D., Bourne H. R. Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the alpha chains. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6687–6691. doi: 10.1073/pnas.83.18.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi A., Fujiwara T. Proteolipid in bovine lung surfactant: its role in surfactant function. Biochem Biophys Res Commun. 1986 Mar 13;135(2):527–532. doi: 10.1016/0006-291x(86)90026-4. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Takei T., Aiba T., Masuda K., Kiuchi A., Fujiwara T. Development of synthetic lung surfactants. J Lipid Res. 1986 May;27(5):475–485. [PubMed] [Google Scholar]
- Warr R. G., Hawgood S., Buckley D. I., Crisp T. M., Schilling J., Benson B. J., Ballard P. L., Clements J. A., White R. T. Low molecular weight human pulmonary surfactant protein (SP5): isolation, characterization, and cDNA and amino acid sequences. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7915–7919. doi: 10.1073/pnas.84.22.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
- Whitsett J. A., Ohning B. L., Ross G., Meuth J., Weaver T., Holm B. A., Shapiro D. L., Notter R. H. Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts used for replacement therapy. Pediatr Res. 1986 May;20(5):460–467. doi: 10.1203/00006450-198605000-00016. [DOI] [PubMed] [Google Scholar]
- Whitsett J. A., Pilot T., Clark J. C., Weaver T. E. Induction of surfactant protein in fetal lung. Effects of cAMP and dexamethasone on SAP-35 RNA and synthesis. J Biol Chem. 1987 Apr 15;262(11):5256–5261. [PubMed] [Google Scholar]
- Whitsett J. A., Weaver T. E., Clark J. C., Sawtell N., Glasser S. W., Korfhagen T. R., Hull W. M. Glucocorticoid enhances surfactant proteolipid Phe and pVal synthesis and RNA in fetal lung. J Biol Chem. 1987 Nov 15;262(32):15618–15623. [PubMed] [Google Scholar]
- Whitsett J. A., Weaver T. E., Lieberman M. A., Clark J. C., Daugherty C. Differential effects of epidermal growth factor and transforming growth factor-beta on synthesis of Mr = 35,000 surfactant-associated protein in fetal lung. J Biol Chem. 1987 Jun 5;262(16):7908–7913. [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Reconstitution of surfactant activity by using the 6 kDa apoprotein associated with pulmonary surfactant. Biochem J. 1986 May 15;236(1):85–89. doi: 10.1042/bj2360085. [DOI] [PMC free article] [PubMed] [Google Scholar]