Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Apr;83(4):1299–1307. doi: 10.1172/JCI114015

Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N.

A T Look 1, R A Ashmun 1, L H Shapiro 1, S C Peiper 1
PMCID: PMC303821  PMID: 2564851

Abstract

To determine the primary structure of CD13, a 150-kD cell surface glycoprotein originally identified on subsets of normal and malignant human myeloid cells, we isolated the complete sequences encoding the polypeptide in overlapping complementary DNA (cDNA) clones. The authenticity of our cDNA clones was demonstrated by the ability of the coding sequences, subcloned in a retroviral expression vector, to mediate expression of bona fide CD13 molecules at the surface of transfected mouse fibroblasts. The nucleotide sequence predicts a 967 amino acid integral membrane protein with a single, 24 amino acid hydrophobic segment near the amino terminus. Amino-terminal protein sequence analysis of CD13 molecules indicated that the hydrophobic segment is not cleaved, but rather serves as both a signal for membrane insertion and as a stable membrane-spanning segment. The remainder of the molecule consists of a large extracellular carboxyterminal domain, which contains a pentapeptide consensus sequence characteristic of members of the zinc-binding metalloprotease superfamily. Sequence comparisons with known enzymes of this class revealed that CD13 is identical to aminopeptidase N, a membrane-bound glycoprotein thought to be involved in the metabolism of regulatory peptides by diverse cell types, including small intestinal and renal tubular epithelial cells, macrophages, granulocytes, and synaptic membranes prepared from cells of the central nervous system.

Full text

PDF
1299

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almenoff J., Wilk S., Orlowski M. Membrane bound pituitary metalloendopeptidase: apparent identity to enkephalinase. Biochem Biophys Res Commun. 1981 Sep 16;102(1):206–214. doi: 10.1016/0006-291x(81)91508-4. [DOI] [PubMed] [Google Scholar]
  2. Benuck M., Berg M. J., Marks N. Rat brain and kidney metalloendopeptidase: enkephalin heptapeptide conversion to form a cardioactive neuropeptide, Phe-Met-Arg-Phe-amide. Biochem Biophys Res Commun. 1982 Aug;107(3):1123–1129. doi: 10.1016/0006-291x(82)90638-6. [DOI] [PubMed] [Google Scholar]
  3. Bowes M. A., Kenny A. J. An immunohistochemical study of endopeptidase-24.11 and aminopeptidase N in lymphoid tissues. Immunology. 1987 Feb;60(2):247–253. [PMC free article] [PubMed] [Google Scholar]
  4. Braun M. P., Martin P. J., Ledbetter J. A., Hansen J. A. Granulocytes and cultured human fibroblasts express common acute lymphoblastic leukemia-associated antigens. Blood. 1983 Apr;61(4):718–725. [PubMed] [Google Scholar]
  5. Cepko C. L., Roberts B. E., Mulligan R. C. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell. 1984 Jul;37(3):1053–1062. doi: 10.1016/0092-8674(84)90440-9. [DOI] [PubMed] [Google Scholar]
  6. Connelly J. C., Skidgel R. A., Schulz W. W., Johnson A. R., Erdös E. G. Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8737–8741. doi: 10.1073/pnas.82.24.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danielsen E. M. Biosynthesis of intestinal microvillar proteins. Pulse-chase labelling studies on aminopeptidase N and sucrase-isomaltase. Biochem J. 1982 Jun 15;204(3):639–645. doi: 10.1042/bj2040639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devault A., Lazure C., Nault C., Le Moual H., Seidah N. G., Chrétien M., Kahn P., Powell J., Mallet J., Beaumont A. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J. 1987 May;6(5):1317–1322. doi: 10.1002/j.1460-2075.1987.tb02370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devault A., Nault C., Zollinger M., Fournie-Zaluski M. C., Roques B. P., Crine P., Boileau G. Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. Characterization of the recombinant enzyme and evidence for a glutamic acid residue at the active site. J Biol Chem. 1988 Mar 15;263(8):4033–4040. [PubMed] [Google Scholar]
  10. Devault A., Sales V., Nault C., Beaumont A., Roques B., Crine P., Boileau G. Exploration of the catalytic site of endopeptidase 24.11 by site-directed mutagenesis. Histidine residues 583 and 587 are essential for catalysis. FEBS Lett. 1988 Apr 11;231(1):54–58. doi: 10.1016/0014-5793(88)80701-4. [DOI] [PubMed] [Google Scholar]
  11. Drexler H. G., Sagawa K., Menon M., Minowada J. Reactivity pattern of 'myeloid monoclonal antibodies' with emphasis on MCS-2. Leuk Res. 1986;10(1):17–23. doi: 10.1016/0145-2126(86)90100-1. [DOI] [PubMed] [Google Scholar]
  12. Drickamer K., Mamon J. F., Binns G., Leung J. O. Primary structure of the rat liver asialoglycoprotein receptor. Structural evidence for multiple polypeptide species. J Biol Chem. 1984 Jan 25;259(2):770–778. [PubMed] [Google Scholar]
  13. Fulcher I. S., Matsas R., Turner A. J., Kenny A. J. Kidney neutral endopeptidase and the hydrolysis of enkephalin by synaptic membranes show similar sensitivity to inhibitors. Biochem J. 1982 May 1;203(2):519–522. doi: 10.1042/bj2030519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gafford J. T., Skidgel R. A., Erdös E. G., Hersh L. B. Human kidney "enkephalinase", a neutral metalloendopeptidase that cleaves active peptides. Biochemistry. 1983 Jun 21;22(13):3265–3271. doi: 10.1021/bi00282a035. [DOI] [PubMed] [Google Scholar]
  15. Greaves M. F., Hariri G., Newman R. A., Sutherland D. R., Ritter M. A., Ritz J. Selective expression of the common acute lymphoblastic leukemia (gp 100) antigen on immature lymphoid cells and their malignant counterparts. Blood. 1983 Apr;61(4):628–639. [PubMed] [Google Scholar]
  16. Greaves M., Delia D., Janossy G., Rapson N., Chessells J., Woods M., Prentice G. Acute lymphoblastic leukaemia associated antigen. IV. Expression on non-leukaemic 'lymphoid' cells. Leuk Res. 1980;4(1):15–32. doi: 10.1016/0145-2126(80)90044-2. [DOI] [PubMed] [Google Scholar]
  17. Griffin J. D., Davis R., Nelson D. A., Davey F. R., Mayer R. J., Schiffer C., McIntyre O. R., Bloomfield C. D. Use of surface marker analysis to predict outcome of adult acute myeloblastic leukemia. Blood. 1986 Dec;68(6):1232–1241. [PubMed] [Google Scholar]
  18. Griffin J. D., Mayer R. J., Weinstein H. J., Rosenthal D. S., Coral F. S., Beveridge R. P., Schlossman S. F. Surface marker analysis of acute myeloblastic leukemia: identification of differentiation-associated phenotypes. Blood. 1983 Sep;62(3):557–563. [PubMed] [Google Scholar]
  19. Griffin J. D., Ritz J., Beveridge R. P., Lipton J. M., Daley J. F., Schlossman S. F. Expression of MY7 antigen on myeloid precursor cells. Int J Cell Cloning. 1983 Apr;1(1):33–48. doi: 10.1002/stem.5530010106. [DOI] [PubMed] [Google Scholar]
  20. Griffin J. D., Ritz J., Nadler L. M., Schlossman S. F. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest. 1981 Oct;68(4):932–941. doi: 10.1172/JCI110348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holers V. M., Chaplin D. D., Leykam J. F., Gruner B. A., Kumar V., Atkinson J. P. Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2459–2463. doi: 10.1073/pnas.84.8.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Holland E. C., Leung J. O., Drickamer K. Rat liver asialoglycoprotein receptor lacks a cleavable NH2-terminal signal sequence. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7338–7342. doi: 10.1073/pnas.81.23.7338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hunziker W., Spiess M., Semenza G., Lodish H. F. The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell. 1986 Jul 18;46(2):227–234. doi: 10.1016/0092-8674(86)90739-7. [DOI] [PubMed] [Google Scholar]
  24. Janossy G., Bollum F. J., Bradstock K. F., Ashley J. Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. Blood. 1980 Sep;56(3):430–441. [PubMed] [Google Scholar]
  25. Janossy G., Bollum F. J., Bradstock K. F., McMichael A., Rapson N., Greaves M. F. Terminal transferase-positive human bone marrow cells exhibit the antigenic phenotype of common acute lymphoblastic leukemia. J Immunol. 1979 Oct;123(4):1525–1529. [PubMed] [Google Scholar]
  26. Keating A., Whalen C. K., Singer J. W. Cultured marrow stromal cells express common acute lymphoblastic leukaemia antigen (CALLA): implications for marrow transplantation. Br J Haematol. 1983 Dec;55(4):623–628. doi: 10.1111/j.1365-2141.1983.tb02844.x. [DOI] [PubMed] [Google Scholar]
  27. Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
  28. Kerr M. A., Kenny A. J. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):477–488. doi: 10.1042/bj1370477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  30. Letarte M., Vera S., Tran R., Addis J. B., Onizuka R. J., Quackenbush E. J., Jongeneel C. V., McInnes R. R. Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J Exp Med. 1988 Oct 1;168(4):1247–1253. doi: 10.1084/jem.168.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Look A. T., Peiper S. C., Douglass E. C., Trent J. M., Sherr C. J. Amplification of genes encoding human myeloid membrane antigens after DNA-mediated gene transfer. Blood. 1986 Mar;67(3):637–645. [PubMed] [Google Scholar]
  32. Look A. T., Peiper S. C., Rebentisch M. B., Ashmun R. A., Roussel M. F., Lemons R. S., Le Beau M. M., Rubin C. M., Sherr C. J. Molecular cloning, expression, and chromosomal localization of the gene encoding a human myeloid membrane antigen (gp150). J Clin Invest. 1986 Oct;78(4):914–921. doi: 10.1172/JCI112680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Look A. T., Peiper S. C., Rebentisch M. B., Ashmun R. A., Roussel M. F., Rettenmier C. W., Sherr C. J. Transfer and expression of the gene encoding a human myeloid membrane antigen (gp150). J Clin Invest. 1985 Feb;75(2):569–579. doi: 10.1172/JCI111733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Malfroy B., Kuang W. J., Seeburg P. H., Mason A. J., Schofield P. R. Molecular cloning and amino acid sequence of human enkephalinase (neutral endopeptidase). FEBS Lett. 1988 Feb 29;229(1):206–210. doi: 10.1016/0014-5793(88)80828-7. [DOI] [PubMed] [Google Scholar]
  35. Malfroy B., Schofield P. R., Kuang W. J., Seeburg P. H., Mason A. J., Henzel W. J. Molecular cloning and amino acid sequence of rat enkephalinase. Biochem Biophys Res Commun. 1987 Apr 14;144(1):59–66. doi: 10.1016/s0006-291x(87)80475-8. [DOI] [PubMed] [Google Scholar]
  36. Matsas R., Stephenson S. L., Hryszko J., Kenny A. J., Turner A. J. The metabolism of neuropeptides. Phase separation of synaptic membrane preparations with Triton X-114 reveals the presence of aminopeptidase N. Biochem J. 1985 Oct 15;231(2):445–449. doi: 10.1042/bj2310445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  38. McClelland A., Kühn L. C., Ruddle F. H. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984 Dec;39(2 Pt 1):267–274. doi: 10.1016/0092-8674(84)90004-7. [DOI] [PubMed] [Google Scholar]
  39. McCormack R. T., Nelson R. D., LeBien T. W. Structure/function studies of the common acute lymphoblastic leukemia antigen (CALLA/CD10) expressed on human neutrophils. J Immunol. 1986 Aug 1;137(3):1075–1082. [PubMed] [Google Scholar]
  40. McKerrow J. H. Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia protease. J Biol Chem. 1987 May 5;262(13):5943–5943. [PubMed] [Google Scholar]
  41. McKolanis J. R., Finn O. J., Metzgar R. S. Characterization of human myelomonocytic antigens using monoclonal antibodies. Prog Clin Biol Res. 1983;133:145–156. [PubMed] [Google Scholar]
  42. Metzgar R. S., Borowitz M. J., Jones N. H., Dowell B. L. Distribution of common acute lymphoblastic leukemia antigen in nonhematopoietic tissues. J Exp Med. 1981 Oct 1;154(4):1249–1254. doi: 10.1084/jem.154.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mirro J., Zipf T. F., Pui C. H., Kitchingman G., Williams D., Melvin S., Murphy S. B., Stass S. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985 Nov;66(5):1115–1123. [PubMed] [Google Scholar]
  44. Mumford R. A., Pierzchala P. A., Strauss A. W., Zimmerman M. Purification of a membrane-bound metalloendopeptidase from porcine kidney that degrades peptide hormones. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6623–6627. doi: 10.1073/pnas.78.11.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nagaoka I., Yamashita T. Inactivation of phagocytosis-stimulating activity of tuftsin by polymorphonuclear neutrophils. A possible role of leucine aminopeptidase as an ecto-enzyme. Biochim Biophys Acta. 1981 Jun 11;675(1):85–93. doi: 10.1016/0304-4165(81)90072-6. [DOI] [PubMed] [Google Scholar]
  46. Nagaoka I., Yamashita T. Leucine aminopeptidase as an echo-enzyme of polymorphonuclear neutrophils. Biochim Biophys Acta. 1980 May 8;598(1):169–172. doi: 10.1016/0005-2736(80)90274-6. [DOI] [PubMed] [Google Scholar]
  47. Olsen J., Cowell G. M., Kønigshøfer E., Danielsen E. M., Møller J., Laustsen L., Hansen O. C., Welinder K. G., Engberg J., Hunziker W. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett. 1988 Oct 10;238(2):307–314. doi: 10.1016/0014-5793(88)80502-7. [DOI] [PubMed] [Google Scholar]
  48. Painter R. G., Dukes R., Sullivan J., Carter R., Erdös E. G., Johnson A. R. Function of neutral endopeptidase on the cell membrane of human neutrophils. J Biol Chem. 1988 Jul 5;263(19):9456–9461. [PubMed] [Google Scholar]
  49. Peiper S. C., Ashmun R. A., Look A. T. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen. Blood. 1988 Jul;72(1):314–321. [PubMed] [Google Scholar]
  50. Pesando J. M., Tomaselli K. J., Lazarus H., Schlossman S. F. Distribution and modulation of a human leukemia-associated antigen (CALLA). J Immunol. 1983 Oct;131(4):2038–2045. [PubMed] [Google Scholar]
  51. Platt J. L., LeBien T. W., Michael A. F. Stages of renal ontogenesis identified by monoclonal antibodies reactive with lymphohemopoietic differentiation antigens. J Exp Med. 1983 Jan 1;157(1):155–172. doi: 10.1084/jem.157.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  53. Quackenbush E. J., Gougos A., Baumal R., Letarte M. Differential localization within human kidney of five membrane proteins expressed on acute lymphoblastic leukemia cells. J Immunol. 1986 Jan;136(1):118–124. [PubMed] [Google Scholar]
  54. Rettenmier C. W., Roussel M. F., Quinn C. O., Kitchingman G. R., Look A. T., Sherr C. J. Transmembrane orientation of glycoproteins encoded by the v-fms oncogene. Cell. 1985 Apr;40(4):971–981. doi: 10.1016/0092-8674(85)90357-5. [DOI] [PubMed] [Google Scholar]
  55. Sabbath K. D., Ball E. D., Larcom P., Davis R. B., Griffin J. D. Heterogeneity of clonogenic cells in acute myeloblastic leukemia. J Clin Invest. 1985 Feb;75(2):746–753. doi: 10.1172/JCI111756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sakai K., Hattori T., Sagawa K., Yokoyama M., Takatsuki K. Biochemical and functional characterization of MCS-2 antigen (CD13) on myeloid leukemic cells and polymorphonuclear leukocytes. Cancer Res. 1987 Nov 1;47(21):5572–5576. [PubMed] [Google Scholar]
  57. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Schneider C., Owen M. J., Banville D., Williams J. G. Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature. 1984 Oct 18;311(5987):675–678. doi: 10.1038/311675b0. [DOI] [PubMed] [Google Scholar]
  59. Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol. 1986;2:255–313. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]
  60. Shipp M. A., Richardson N. E., Sayre P. H., Brown N. R., Masteller E. L., Clayton L. K., Ritz J., Reinherz E. L. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4819–4823. doi: 10.1073/pnas.85.13.4819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Sobol R. E., Mick R., Royston I., Davey F. R., Ellison R. R., Newman R., Cuttner J., Griffin J. D., Collins H., Nelson D. A. Clinical importance of myeloid antigen expression in adult acute lymphoblastic leukemia. N Engl J Med. 1987 Apr 30;316(18):1111–1117. doi: 10.1056/NEJM198704303161802. [DOI] [PubMed] [Google Scholar]
  62. Stewart J. R., Kenny A. J. Proteins of the kidney microvillar membrane. Biosynthesis of endopeptidase-24.11, dipeptidylpeptidase IV and aminopeptidases N and A in pig kidney slices. Biochem J. 1984 Dec 1;224(2):549–558. doi: 10.1042/bj2240549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Turner A. J., Matsas R., Kenny A. J. Are there neuropeptide-specific peptidases? Biochem Pharmacol. 1985 May 1;34(9):1347–1356. doi: 10.1016/0006-2952(85)90669-0. [DOI] [PubMed] [Google Scholar]
  64. Wickner W. T., Lodish H. F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985 Oct 25;230(4724):400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
  65. Yarden Y., Escobedo J. A., Kuang W. J., Yang-Feng T. L., Daniel T. O., Tremble P. M., Chen E. Y., Ando M. E., Harkins R. N., Francke U. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature. 1986 Sep 18;323(6085):226–232. doi: 10.1038/323226a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES