Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Apr;83(4):1326–1335. doi: 10.1172/JCI114019

Role of reactive oxygen species in reperfusion injury of the rabbit lung.

T P Kennedy 1, N V Rao 1, C Hopkins 1, L Pennington 1, E Tolley 1, J R Hoidal 1
PMCID: PMC303825  PMID: 2467923

Abstract

We have developed a model of reperfusion injury in Krebs buffer-perfused rabbit lungs, characterized by pulmonary vasoconstriction, microvascular injury, and marked lung edema formation. During reperfusion there was a threefold increase in lung superoxide anion (O2-) production, as measured by in vivo reduction of nitroblue tetrazolium, and a twofold increase in the release of O2- into lung perfusate, as measured by reduction of succinylated ferricytochrome c. Injury could be prevented by the xanthine oxidase inhibitor allopurinol, the O2- scavenger SOD, the hydrogen peroxide scavenger catalase, the iron chelator deferoxamine, or the thiols dimethylthiourea or N-acetylcysteine. The protective effect of SOD could be abolished by the anion channel blocker 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid, indicating that SOD consumes O2- in the extracellular medium, thereby creating a concentration gradient favorable for rapid diffusion of O2- out of cells. Our results extend information about the mechanisms of reperfusion lung injury that have been assembled by studies in other organs, and offer potential strategies for improved organ preservation, for treatment of reperfusion injury after pulmonary thromboembolectomy, and for explanation and therapy of many complications of pulmonary embolism.

Full text

PDF
1326

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard G. R., Lucht W. D., Niedermeyer M. E., Snapper J. R., Ogletree M. L., Brigham K. L. Effect of N-acetylcysteine on the pulmonary response to endotoxin in the awake sheep and upon in vitro granulocyte function. J Clin Invest. 1984 Jun;73(6):1772–1784. doi: 10.1172/JCI111386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop M. J., Boatman E. S., Ivey T. D., Jordan J. P., Cheney F. W. Reperfusion of ischemic dog lung results in fever, leukopenia, and lung edema. Am Rev Respir Dis. 1986 Oct;134(4):752–756. doi: 10.1164/arrd.1986.134.4.752. [DOI] [PubMed] [Google Scholar]
  3. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  4. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  5. Farrukh I. S., Michael J. R., Summer W. R., Adkinson N. F., Jr, Gurtner G. H. Thromboxane-induced pulmonary vasoconstriction: involvement of calcium. J Appl Physiol (1985) 1985 Jan;58(1):34–44. doi: 10.1152/jappl.1985.58.1.34. [DOI] [PubMed] [Google Scholar]
  6. Fisher A. B., Dodia C. Lung as a model for evaluation of critical intracellular PO2 and PCO. Am J Physiol. 1981 Jul;241(1):E47–E50. doi: 10.1152/ajpendo.1981.241.1.E47. [DOI] [PubMed] [Google Scholar]
  7. Fox R. B. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J Clin Invest. 1984 Oct;74(4):1456–1464. doi: 10.1172/JCI111558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freeman B. A., Young S. L., Crapo J. D. Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. J Biol Chem. 1983 Oct 25;258(20):12534–12542. [PubMed] [Google Scholar]
  9. Granger D. N., Rutili G., McCord J. M. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981 Jul;81(1):22–29. [PubMed] [Google Scholar]
  10. Greene R., Zapol W. M., Snider M. T., Reid L., Snow R., O'Connell R. S., Novelline R. A. Early bedside detection of pulmonary vascular occlusion during acute respiratory failure. Am Rev Respir Dis. 1981 Nov;124(5):593–601. doi: 10.1164/arrd.1981.124.5.593. [DOI] [PubMed] [Google Scholar]
  11. Gutteridge J. M., Richmond R., Halliwell B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J. 1979 Nov 15;184(2):469–472. doi: 10.1042/bj1840469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B. Use of desferrioxamine as a 'probe' for iron-dependent formation of hydroxyl radicals. Evidence for a direct reaction between desferal and the superoxide radical. Biochem Pharmacol. 1985 Jan 15;34(2):229–233. doi: 10.1016/0006-2952(85)90129-7. [DOI] [PubMed] [Google Scholar]
  14. Jackson R. M., Veal C. F., Alexander C. B., Brannen A. L., Fulmer J. D. Re-expansion pulmonary edema. A potential role for free radicals in its pathogenesis. Am Rev Respir Dis. 1988 May;137(5):1165–1171. doi: 10.1164/ajrccm/137.5.1165. [DOI] [PubMed] [Google Scholar]
  15. Kontos H. A., Wei E. P., Ellis E. F., Jenkins L. W., Povlishock J. T., Rowe G. T., Hess M. L. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res. 1985 Jul;57(1):142–151. doi: 10.1161/01.res.57.1.142. [DOI] [PubMed] [Google Scholar]
  16. Kuthan H., Ullrich V., Estabrook R. W. A quantitative test for superoxide radicals produced in biological systems. Biochem J. 1982 Jun 1;203(3):551–558. doi: 10.1042/bj2030551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levinson R. M., Shure D., Moser K. M. Reperfusion pulmonary edema after pulmonary artery thromboendarterectomy. Am Rev Respir Dis. 1986 Dec;134(6):1241–1245. doi: 10.1164/arrd.1986.134.6.1241. [DOI] [PubMed] [Google Scholar]
  18. Lynch R. E., Fridovich I. Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem. 1978 Jul 10;253(13):4697–4699. [PubMed] [Google Scholar]
  19. Manson P. N., Anthenelli R. M., Im M. J., Bulkley G. B., Hoopes J. E. The role of oxygen-free radicals in ischemic tissue injury in island skin flaps. Ann Surg. 1983 Jul;198(1):87–90. doi: 10.1097/00000658-198307000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  21. Nayini N. R., White B. C., Aust S. D., Huang R. R., Indrieri R. J., Evans A. T., Bialek H., Jacobs W. A., Komara J. Post resuscitation iron delocalization and malondialdehyde production in the brain following prolonged cardiac arrest. J Free Radic Biol Med. 1985;1(2):111–116. doi: 10.1016/0748-5514(85)90014-5. [DOI] [PubMed] [Google Scholar]
  22. Paller M. S., Hoidal J. R., Ferris T. F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984 Oct;74(4):1156–1164. doi: 10.1172/JCI111524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Parks D. A., Granger D. N. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl. 1986;548:87–99. [PubMed] [Google Scholar]
  24. Reitz B. A., Wallwork J. L., Hunt S. A., Pennock J. L., Billingham M. E., Oyer P. E., Stinson E. B., Shumway N. E. Heart-lung transplantation: successful therapy for patients with pulmonary vascular disease. N Engl J Med. 1982 Mar 11;306(10):557–564. doi: 10.1056/NEJM198203113061001. [DOI] [PubMed] [Google Scholar]
  25. Sanfey H., Bulkley G. B., Cameron J. L. The pathogenesis of acute pancreatitis. The source and role of oxygen-derived free radicals in three different experimental models. Ann Surg. 1985 May;201(5):633–639. doi: 10.1097/00000658-198505000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tate R. M., Morris H. G., Schroeder W. R., Repine J. E. Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. J Clin Invest. 1984 Aug;74(2):608–613. doi: 10.1172/JCI111458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem. 1985 Mar 25;260(6):3275–3280. [PubMed] [Google Scholar]
  28. Tjandramaga T. B., Cucinell S. A., Israili Z. H., Perel J. M., Dayton P. G., Yü T. F., Gutman A. B. Observations on the disposition of probenecid in patients receiving allopurinol. Pharmacology. 1972;8(4):259–272. doi: 10.1159/000136342. [DOI] [PubMed] [Google Scholar]
  29. Vesell E. S., Passananti G. T., Greene F. E. Impairment of drug metabolism in man by allopurinol and nortriptyline. N Engl J Med. 1970 Dec 31;283(27):1484–1488. doi: 10.1056/NEJM197012312832703. [DOI] [PubMed] [Google Scholar]
  30. Weiss S. J. Oxygen, ischemia and inflammation. Acta Physiol Scand Suppl. 1986;548:9–37. [PubMed] [Google Scholar]
  31. Wieth J. O., Andersen O. S., Brahm J., Bjerrum P. J., Borders C. L., Jr Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):383–399. doi: 10.1098/rstb.1982.0139. [DOI] [PubMed] [Google Scholar]
  32. Zweier J. L. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem. 1988 Jan 25;263(3):1353–1357. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES