Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Apr;83(4):1390–1399. doi: 10.1172/JCI114027

Fabry disease: six gene rearrangements and an exonic point mutation in the alpha-galactosidase gene.

H S Bernstein 1, D F Bishop 1, K H Astrin 1, R Kornreich 1, C M Eng 1, H Sakuraba 1, R J Desnick 1
PMCID: PMC303833  PMID: 2539398

Abstract

Fabry disease, an X-linked recessive disorder of glycosphingolipid catabolism, results from the deficient activity of the lysosomal hydrolase, alpha-galactosidase. Southern hybridization analysis of the alpha-galactosidase gene in affected hemizygous males from 130 unrelated families with Fabry disease revealed six with different gene rearrangements and one with an exonic point mutation resulting in the obliteration of an Msp I restriction site. Five partial gene deletions were detected ranging in size from 0.4 to greater than 5.5 kb. Four of these deletions had breakpoints in intron 2, a region in the gene containing multiple Alu repeat sequences. A sixth genomic rearrangement was identified in which a region of about 8 kb, containing exons 2 through 6, was duplicated by a homologous, but unequal crossover event. The Msp I site obliteration, which mapped to exon 7, was detected in an affected hemizygote who had residual enzyme activity. Genomic amplification by the polymerase chain reaction and sequencing revealed that the obliteration resulted from a C to T transition at nucleotide 1066 in the coding sequence. This point mutation, the first identified in Fabry disease, resulted in an arginine356 to tryptophan356 substitution which altered the enzyme's kinetic and stability properties. The detection of these abnormalities provided for the precise identification of Fabry heterozygotes, thereby permitting molecular pedigree analysis in these families which revealed paternity exclusions and the first documented new mutations in this disease.

Full text

PDF
1390

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge J., Kunkel L., Bruns G., Tantravahi U., Lalande M., Brewster T., Moreau E., Wilson M., Bromley W., Roderick T. A strategy to reveal high-frequency RFLPs along the human X chromosome. Am J Hum Genet. 1984 May;36(3):546–564. [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. A., Gusella J. F. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro. 1984 Nov;20(11):856–858. doi: 10.1007/BF02619631. [DOI] [PubMed] [Google Scholar]
  3. Antonarakis S. E., Waber P. G., Kittur S. D., Patel A. S., Kazazian H. H., Jr, Mellis M. A., Counts R. B., Stamatoyannopoulos G., Bowie E. J., Fass D. N. Hemophilia A. Detection of molecular defects and of carriers by DNA analysis. N Engl J Med. 1985 Oct 3;313(14):842–848. doi: 10.1056/NEJM198510033131402. [DOI] [PubMed] [Google Scholar]
  4. Avila J. L., Convit J., Velazquez-Avila G. Fabry's disease: normal alpha-galactosidase activity and urinary-sediment glycosphingolipid levels in two obligate heterozygotes. Br J Dermatol. 1973 Aug;89(2):149–157. doi: 10.1111/j.1365-2133.1973.tb02951.x. [DOI] [PubMed] [Google Scholar]
  5. Bach G., Rosenmann E., Karni A., Cohen T. Pseudodeficiency of alpha-galactosidase A. Clin Genet. 1982 Jan;21(1):59–64. [PubMed] [Google Scholar]
  6. Barker D., Schafer M., White R. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell. 1984 Jan;36(1):131–138. doi: 10.1016/0092-8674(84)90081-3. [DOI] [PubMed] [Google Scholar]
  7. Bentley A. K., Rees D. J., Rizza C., Brownlee G. G. Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position -4. Cell. 1986 May 9;45(3):343–348. doi: 10.1016/0092-8674(86)90319-3. [DOI] [PubMed] [Google Scholar]
  8. Beutler E., Kuhl W. Absence of cross-reactive antigen in Fabry's disease. N Engl J Med. 1973 Sep 27;289(13):694–695. doi: 10.1056/NEJM197309272891314. [DOI] [PubMed] [Google Scholar]
  9. Bishop D. F., Calhoun D. H., Bernstein H. S., Hantzopoulos P., Quinn M., Desnick R. J. Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4859–4863. doi: 10.1073/pnas.83.13.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bishop D. F., Desnick R. J. Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. J Biol Chem. 1981 Feb 10;256(3):1307–1316. [PubMed] [Google Scholar]
  11. Bonthron D. T., Markham A. F., Ginsburg D., Orkin S. H. Identification of a point mutation in the adenosine deaminase gene responsible for immunodeficiency. J Clin Invest. 1985 Aug;76(2):894–897. doi: 10.1172/JCI112050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brady R. O., Uhlendorf B. W., Jacobson C. B. Fabry's disease: antenatal detection. Science. 1971 Apr 9;172(3979):174–175. doi: 10.1126/science.172.3979.174. [DOI] [PubMed] [Google Scholar]
  13. Britten R. J., Baron W. F., Stout D. B., Davidson E. H. Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4770–4774. doi: 10.1073/pnas.85.13.4770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brunk C. F., Jones K. C., James T. W. Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem. 1979 Jan 15;92(2):497–500. doi: 10.1016/0003-2697(79)90690-0. [DOI] [PubMed] [Google Scholar]
  15. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  16. Clarke J. T., Knaack J., Crawhall J. C., Wolfe L. S. Ceramide trihexosidosis (fabry's disease) without skin lesions. N Engl J Med. 1971 Feb 4;284(5):233–235. doi: 10.1056/NEJM197102042840503. [DOI] [PubMed] [Google Scholar]
  17. Colombi A., Kostyal A., Bracher R., Gloor F., Mazzi R., Thölen H. Angiokeratoma corporis diffusum--Fabry's disease. Helv Med Acta. 1967 Dec;34(1):67–83. [PubMed] [Google Scholar]
  18. Cullen C. R., Hubberman P., Kaslow D. C., Migeon B. R. Comparison of factor IX methylation on human active and inactive X chromosomes: implications for X inactivation and transcription of tissue-specific genes. EMBO J. 1986 Sep;5(9):2223–2229. doi: 10.1002/j.1460-2075.1986.tb04488.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dean K. J., Sweeley C. C. Studies on human liver alpha-galactosidases. I. Purification of alpha-galactosidase A and its enzymatic properties with glycolipid and oligosaccharide substrates. J Biol Chem. 1979 Oct 25;254(20):9994–10000. [PubMed] [Google Scholar]
  20. Desnick R. J., Allen K. Y., Desnick S. J., Raman M. K., Bernlohr R. W., Krivit W. Fabry's disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med. 1973 Feb;81(2):157–171. [PubMed] [Google Scholar]
  21. Desnick R. J., Bernstein H. S., Astrin K. H., Bishop D. F. Fabry disease: molecular diagnosis of hemizygotes and heterozygotes. Enzyme. 1987;38(1-4):54–64. doi: 10.1159/000469190. [DOI] [PubMed] [Google Scholar]
  22. Duchange N., Chassé J. F., Cohen G. N., Zakin M. M. Antithrombin III tours gene: identification of a point mutation leading to an arginine----cysteine replacement in a silent deficiency. Nucleic Acids Res. 1986 Mar 11;14(5):2408–2408. doi: 10.1093/nar/14.5.2408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Forrest S. M., Cross G. S., Speer A., Gardner-Medwin D., Burn J., Davies K. E. Preferential deletion of exons in Duchenne and Becker muscular dystrophies. Nature. 1987 Oct 15;329(6140):638–640. doi: 10.1038/329638a0. [DOI] [PubMed] [Google Scholar]
  24. Gahl W. A., Adamson M., Kaiser-Kupfer I., Ludwig I. H., O'Connell H. J., Cohen W., Barranger J. Biochemical phenotyping of a single sibship with both cystinosis and Fabry disease. J Inherit Metab Dis. 1985;8(3):127–131. doi: 10.1007/BF01819297. [DOI] [PubMed] [Google Scholar]
  25. Gartler S. M., Riggs A. D. Mammalian X-chromosome inactivation. Annu Rev Genet. 1983;17:155–190. doi: 10.1146/annurev.ge.17.120183.001103. [DOI] [PubMed] [Google Scholar]
  26. Henthorn P. S., Mager D. L., Huisman T. H., Smithies O. A gene deletion ending within a complex array of repeated sequences 3' to the human beta-globin gene cluster. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5194–5198. doi: 10.1073/pnas.83.14.5194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Holliday R. Strong effects of 5-azacytidine on the in vitro lifespan of human diploid fibroblasts. Exp Cell Res. 1986 Oct;166(2):543–552. doi: 10.1016/0014-4827(86)90499-4. [DOI] [PubMed] [Google Scholar]
  28. Hwu H. R., Roberts J. W., Davidson E. H., Britten R. J. Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3875–3879. doi: 10.1073/pnas.83.11.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Johnson D. L., Del Monte M. A., Cotlier E., Desnick R. J. Fabry disease: diagnosis by alpha-galactosidase activities in tears. Clin Chim Acta. 1975 Aug 18;63(1):81–90. doi: 10.1016/0009-8981(75)90382-4. [DOI] [PubMed] [Google Scholar]
  30. Kidd V. J., Wallace R. B., Itakura K., Woo S. L. alpha 1-antitrypsin deficiency detection by direct analysis of the mutation in the gene. Nature. 1983 Jul 21;304(5923):230–234. doi: 10.1038/304230a0. [DOI] [PubMed] [Google Scholar]
  31. Kobayashi T., Kira J., Shinnoh N., Goto I., Kuroiwa Y. Fabry's disease with partially deficient hydrolysis of ceramide trihexoside. J Neurol Sci. 1985 Feb;67(2):179–185. doi: 10.1016/0022-510x(85)90114-5. [DOI] [PubMed] [Google Scholar]
  32. Korenberg J. R., Rykowski M. C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988 May 6;53(3):391–400. doi: 10.1016/0092-8674(88)90159-6. [DOI] [PubMed] [Google Scholar]
  33. Kusiak J. W., Quirk J. M., Brady R. O. Purification and properties of the two major isozymes of alpha-galactosidase from human placenta. J Biol Chem. 1978 Jan 10;253(1):184–190. [PubMed] [Google Scholar]
  34. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  35. LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
  36. Langlois S., Kastelein J. J., Hayden M. R. Characterization of six partial deletions in the low-density-lipoprotein (LDL) receptor gene causing familial hypercholesterolemia (FH). Am J Hum Genet. 1988 Jul;43(1):60–68. [PMC free article] [PubMed] [Google Scholar]
  37. LeDonne N. C., Jr, Fairley J. L., Sweeley C. C. Biosynthesis of alpha-galactosidase A in cultured Chang liver cells. Arch Biochem Biophys. 1983 Jul 1;224(1):186–195. doi: 10.1016/0003-9861(83)90203-5. [DOI] [PubMed] [Google Scholar]
  38. Lehrman M. A., Schneider W. J., Südhof T. C., Brown M. S., Goldstein J. L., Russell D. W. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985 Jan 11;227(4683):140–146. doi: 10.1126/science.3155573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lemansky P., Bishop D. F., Desnick R. J., Hasilik A., von Figura K. Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem. 1987 Feb 15;262(5):2062–2065. [PubMed] [Google Scholar]
  40. Lin C. S., Goldthwait D. A., Samols D. Identification of Alu transposition in human lung carcinoma cells. Cell. 1988 Jul 15;54(2):153–159. doi: 10.1016/0092-8674(88)90547-8. [DOI] [PubMed] [Google Scholar]
  41. MacDermot K. D., Morgan S. H., Cheshire J. K., Wilson T. M. Anderson Fabry disease, a close linkage with highly polymorphic DNA markers DXS17, DXS87 and DXS88. Hum Genet. 1987 Nov;77(3):263–266. doi: 10.1007/BF00284482. [DOI] [PubMed] [Google Scholar]
  42. Markert M. L., Hutton J. J., Wiginton D. A., States J. C., Kaufman R. E. Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements. J Clin Invest. 1988 May;81(5):1323–1327. doi: 10.1172/JCI113458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Matthews R. J., Anson D. S., Peake I. R., Bloom A. L. Heterogeneity of the factor IX locus in nine hemophilia B inhibitor patients. J Clin Invest. 1987 Mar;79(3):746–753. doi: 10.1172/JCI112880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mayes J. S., Beutler E. alpha-galactosidase A from human placenta. Stability and subunit size. Biochim Biophys Acta. 1977 Oct 13;484(2):408–416. doi: 10.1016/0005-2744(77)90096-1. [DOI] [PubMed] [Google Scholar]
  45. Mayes J. S., Scheerer J. B., Sifers R. N., Donaldson M. L. Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry's disease. Clin Chim Acta. 1981 May 5;112(2):247–251. doi: 10.1016/0009-8981(81)90384-3. [DOI] [PubMed] [Google Scholar]
  46. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  47. Myerowitz R., Hogikyan N. D. A deletion involving Alu sequences in the beta-hexosaminidase alpha-chain gene of French Canadians with Tay-Sachs disease. J Biol Chem. 1987 Nov 15;262(32):15396–15399. [PubMed] [Google Scholar]
  48. Ottolenghi S., Giglioni B. The deletion in a type of delta 0-beta 0-thalassaemia begins in an inverted AluI repeat. Nature. 1982 Dec 23;300(5894):770–771. doi: 10.1038/300770a0. [DOI] [PubMed] [Google Scholar]
  49. Rietra P. J., Molenaar J. L., Hamers M. N., Tager J. M., Borst P. Investigation of the alpha-galactosidase deficiency in Fabry's disease using antibodies against the purified enzyme. Eur J Biochem. 1974 Jul 1;46(1):89–98. doi: 10.1111/j.1432-1033.1974.tb03600.x. [DOI] [PubMed] [Google Scholar]
  50. Romeo G., D'Urso M., Pisacane A., Blum E., De Falco A., Ruffilli A. Residual activity of alpha-galactosidase A in Fabry's disease. Biochem Genet. 1975 Oct;13(9-10):615–628. doi: 10.1007/BF00484919. [DOI] [PubMed] [Google Scholar]
  51. Romeo G., Hassan H. J., Staempfli S., Roncuzzi L., Cianetti L., Leonardi A., Vicente V., Mannucci P. M., Bertina R., Peschle C. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene. Proc Natl Acad Sci U S A. 1987 May;84(9):2829–2832. doi: 10.1073/pnas.84.9.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rozen R., Fox J., Fenton W. A., Horwich A. L., Rosenberg L. E. Gene deletion and restriction fragment length polymorphisms at the human ornithine transcarbamylase locus. 1985 Feb 28-Mar 6Nature. 313(6005):815–817. doi: 10.1038/313815a0. [DOI] [PubMed] [Google Scholar]
  53. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  54. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  55. Shibasaki Y., Kawakami T., Kanazawa Y., Akanuma Y., Takaku F. Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia. J Clin Invest. 1985 Jul;76(1):378–380. doi: 10.1172/JCI111973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  57. Vanin E. F., Henthorn P. S., Kioussis D., Grosveld F., Smithies O. Unexpected relationships between four large deletions in the human beta-globin gene cluster. Cell. 1983 Dec;35(3 Pt 2):701–709. doi: 10.1016/0092-8674(83)90103-4. [DOI] [PubMed] [Google Scholar]
  58. Wareham K. A., Lyon M. F., Glenister P. H., Williams E. D. Age related reactivation of an X-linked gene. 1987 Jun 25-Jul 1Nature. 327(6124):725–727. doi: 10.1038/327725a0. [DOI] [PubMed] [Google Scholar]
  59. Wilson V. L., Smith R. A., Ma S., Cutler R. G. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987 Jul 25;262(21):9948–9951. [PubMed] [Google Scholar]
  60. Wolf H., Modrow S., Motz M., Jameson B. A., Hermann G., Förtsch B. An integrated family of amino acid sequence analysis programs. Comput Appl Biosci. 1988 Mar;4(1):187–191. doi: 10.1093/bioinformatics/4.1.187. [DOI] [PubMed] [Google Scholar]
  61. Yang T. P., Patel P. I., Chinault A. C., Stout J. T., Jackson L. G., Hildebrand B. M., Caskey C. T. Molecular evidence for new mutation at the hprt locus in Lesch-Nyhan patients. Nature. 1984 Aug 2;310(5976):412–414. doi: 10.1038/310412a0. [DOI] [PubMed] [Google Scholar]
  62. Yen P. H., Patel P., Chinault A. C., Mohandas T., Shapiro L. J. Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1759–1763. doi: 10.1073/pnas.81.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Youssoufian H., Antonarakis S. E., Aronis S., Tsiftis G., Phillips D. G., Kazazian H. H., Jr Characterization of five partial deletions of the factor VIII gene. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3772–3776. doi: 10.1073/pnas.84.11.3772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Youssoufian H., Kazazian H. H., Jr, Phillips D. G., Aronis S., Tsiftis G., Brown V. A., Antonarakis S. E. Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. 1986 Nov 27-Dec 3Nature. 324(6095):380–382. doi: 10.1038/324380a0. [DOI] [PubMed] [Google Scholar]
  65. de Jong P. J., Grosovsky A. J., Glickman B. W. Spectrum of spontaneous mutation at the APRT locus of Chinese hamster ovary cells: an analysis at the DNA sequence level. Proc Natl Acad Sci U S A. 1988 May;85(10):3499–3503. doi: 10.1073/pnas.85.10.3499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES