Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 May;83(5):1623–1629. doi: 10.1172/JCI114060

A low-protein diet restricts albumin synthesis in nephrotic rats.

G A Kaysen 1, H Jones Jr 1, V Martin 1, F N Hutchison 1
PMCID: PMC303869  PMID: 2708523

Abstract

High-protein diets increase albumin synthesis in rats with Heymann nephritis but albuminuria increases also, causing serum albumin concentration to be suppressed further than in nephrotic animals eating a low-protein diet. Experiments were designed to determine whether dietary protein augmentation directly stimulates albumin synthesis, or whether instead increased albumin synthesis is triggered by the decrease in serum albumin concentration. Evidence is presented that dietary protein augmentation directly stimulates albumin synthesis, accompanied by a proportional increase in steady-state hepatic albumin mRNA concentration (AlbmRNA) and by an increase in AlbmRNA transcription. When the increased albuminuria resulting from dietary protein augmentation is blunted with enalapril, serum albumin concentration is shown to increase in nephrotic rats. Both albumin synthesis and AlbmRNA increase in these animals despite the greater serum albumin concentration. Albumin synthesis correlates inversely with both serum albumin and serum oncotic pressure in nephrotic rats fed 40% protein, but does not correlate with serum albumin concentration in nephrotic rats fed 8.5% protein (LP), even when serum albumin concentration is reduced. Albumin masses are preserved in LP primarily because of reduced albuminuria. Reduced serum oncotic pressure and dietary protein augmentation combine to stimulate albumin synthesis in nephrotic rats at the level of gene transcription.

Full text

PDF
1623

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benet L. Z., Galeazzi R. L. Noncompartmental determination of the steady-state volume of distribution. J Pharm Sci. 1979 Aug;68(8):1071–1074. doi: 10.1002/jps.2600680845. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Coward W. A., Sawyer M. B. Whole-body albumin mass and distribution in rats fed on low-protein diets. Br J Nutr. 1977 Jan;37(1):127–134. doi: 10.1079/bjn19770012. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Henderson A. R. The effect of feeding with a tryptophan-free amino acid mixture on rat liver magnesium ion-activated deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1970 Nov;120(1):205–214. doi: 10.1042/bj1200205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huberman A. The in vitro effect of colloid osmotic pressure on albumin biosynthesis in normal rat liver. Rev Invest Clin. 1973 Oct-Dec;25(4):321–330. [PubMed] [Google Scholar]
  8. Hutchinson F. N., Schambelan M., Kaysen G. A. Modulation of albuminuria by dietary protein and converting enzyme inhibition. Am J Physiol. 1987 Oct;253(4 Pt 2):F719–F725. doi: 10.1152/ajprenal.1987.253.4.F719. [DOI] [PubMed] [Google Scholar]
  9. Katz J., Bonorris G., Okuyama S., Sellers A. L. Albumin synthesis in perfused liver of normal and nephrotic rats. Am J Physiol. 1967 Jun;212(6):1255–1260. doi: 10.1152/ajplegacy.1967.212.6.1255. [DOI] [PubMed] [Google Scholar]
  10. Kaysen G. A., Gambertoglio J., Jimenez I., Jones H., Hutchison F. N. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 1986 Feb;29(2):572–577. doi: 10.1038/ki.1986.36. [DOI] [PubMed] [Google Scholar]
  11. Kaysen G. A., Kirkpatrick W. G., Couser W. G. Albumin homeostasis in the nephrotic rat: nutritional considerations. Am J Physiol. 1984 Jul;247(1 Pt 2):F192–F202. doi: 10.1152/ajprenal.1984.247.1.F192. [DOI] [PubMed] [Google Scholar]
  12. Kaysen G. A., Schoenfeld P. Y. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1984 Jan;25(1):107–114. doi: 10.1038/ki.1984.15. [DOI] [PubMed] [Google Scholar]
  13. Kaysen G. A., Watson J. B. Mechanism of hypoalbuminemia in the 7/8-nephrectomized rat with chronic renal failure. Am J Physiol. 1982 Oct;243(4):F372–F378. doi: 10.1152/ajprenal.1982.243.4.F372. [DOI] [PubMed] [Google Scholar]
  14. Keutmann E. H., Bassett S. H., Julian G. E., Present C. H., Van Alstine H. E. DIETARY PROTEIN IN HEMORRHAGIC BRIGHT'S DISEASE: II. The Effect of Diet on Serum Proteins, Proteinuria and Tissue Proteins. J Clin Invest. 1935 Nov;14(6):871–888. doi: 10.1172/JCI100737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kirsch R. E., Frith L. O., Saunders S. J. Stimulation of albumin synthesis by keto analogues of amino acids. Biochim Biophys Acta. 1976 Sep 6;442(3):437–441. doi: 10.1016/0005-2787(76)90317-8. [DOI] [PubMed] [Google Scholar]
  16. Kirsch R. E., Saunders S. J., Frith L., Wicht S., Kelman L., Brock J. F. Plasma amino acid concentration and the regulation of albumin synthesis. Am J Clin Nutr. 1969 Dec;22(12):1559–1562. doi: 10.1093/ajcn/22.12.1559. [DOI] [PubMed] [Google Scholar]
  17. Kirsch R., Frith L., Black E., Hoffenberg R. Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature. 1968 Feb 10;217(5128):578–579. doi: 10.1038/217578a0. [DOI] [PubMed] [Google Scholar]
  18. Laurell C. B. Electroimmuno assay. Scand J Clin Lab Invest Suppl. 1972;124:21–37. doi: 10.3109/00365517209102748. [DOI] [PubMed] [Google Scholar]
  19. Lunn P. G., Austin S. Excess energy intake promotes the development of hypoalbuminaemia in rats fed on low-protein diets. Br J Nutr. 1983 Jan;49(1):9–16. doi: 10.1079/bjn19830005. [DOI] [PubMed] [Google Scholar]
  20. Morgan E. H., Peters T., Jr The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis. J Biol Chem. 1971 Jun 10;246(11):3500–3507. [PubMed] [Google Scholar]
  21. Nitta S., Ohnuki T., Ohkuda K., Nakada T., Staub N. C. The corrected protein equation to estimate plasma colloid osmotic pressure and its development on a nomogram. Tohoku J Exp Med. 1981 Sep;135(1):43–49. doi: 10.1620/tjem.135.43. [DOI] [PubMed] [Google Scholar]
  22. Okayama H., Berg P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol. 1983 Feb;3(2):280–289. doi: 10.1128/mcb.3.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oratz M., Rothschild M. A., Schreiber S. S. Effect of dextran infusions on protein synthesis by hepatic microsomes. Am J Physiol. 1970 Apr;218(4):1108–1112. doi: 10.1152/ajplegacy.1970.218.4.1108. [DOI] [PubMed] [Google Scholar]
  24. Princen J. M., Mol-Backx G. P., Yap S. H. Restoration effects of glucose refeeding on reduced synthesis of albumin and total protein and on disaggregated polyribosomes in liver of starved rats: evidence of a post-transcriptional control mechanism. Ann Nutr Metab. 1983;27(3):182–193. doi: 10.1159/000176651. [DOI] [PubMed] [Google Scholar]
  25. ROTHSCHILD M. A., ORATZM, FRANKLINEC, SCHREIBER S. S. The effect of hypergammaglobulinemia on albumin metabolism in hyperimmunized rabbits studied with albumin-I-131. J Clin Invest. 1962 Jul;41:1564–1571. doi: 10.1172/JCI104613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Riegelman S., Collier P. The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J Pharmacokinet Biopharm. 1980 Oct;8(5):509–534. doi: 10.1007/BF01059549. [DOI] [PubMed] [Google Scholar]
  27. Roberts R. C., Soonnentag C. O., Frisbie J. H. Rapid preparation of autologous radioiodinated fibrinogen. J Nucl Med. 1972 Nov;13(11):843–846. [PubMed] [Google Scholar]
  28. Rosenberg M. E., Swanson J. E., Thomas B. L., Hostetter T. H. Glomerular and hormonal responses to dietary protein intake in human renal disease. Am J Physiol. 1987 Dec;253(6 Pt 2):F1083–F1090. doi: 10.1152/ajprenal.1987.253.6.F1083. [DOI] [PubMed] [Google Scholar]
  29. Sargent T. D., Yang M., Bonner J. Nucleotide sequence of cloned rat serum albumin messenger RNA. Proc Natl Acad Sci U S A. 1981 Jan;78(1):243–246. doi: 10.1073/pnas.78.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sellers A. L., Katz J., Bonorris G. Albumin distribution in the nephrotic rat. J Lab Clin Med. 1968 Mar;71(3):511–516. [PubMed] [Google Scholar]
  31. Sellers A. L., Katz J., Bonorris G., Okuyama S. Determination of extravascular albumin in the rat. J Lab Clin Med. 1966 Aug;68(2):177–185. [PubMed] [Google Scholar]
  32. Smith J. E., Lunn P. G. Albumin-synthesizing capacity of hepatocytes isolated from rats fed diets differing in protein and energy content. Ann Nutr Metab. 1984;28(5):281–287. doi: 10.1159/000176817. [DOI] [PubMed] [Google Scholar]
  33. Soeiro R., Darnell J. E. Competition hybridization by "pre-saturation" of HeLa cell DNA. J Mol Biol. 1969 Sep 28;44(3):551–562. doi: 10.1016/0022-2836(69)90379-9. [DOI] [PubMed] [Google Scholar]
  34. Tata J. R. Isolation of nuclei from liver and other tissues. Methods Enzymol. 1974;31:253–262. doi: 10.1016/0076-6879(74)31027-0. [DOI] [PubMed] [Google Scholar]
  35. Veselý J., Cihák Enhanced DNA-dependent RNA polymerase and RNA synthesis in rat liver nuclei after administration of L-tryptophan. Biochim Biophys Acta. 1970 Apr 15;204(2):614–616. doi: 10.1016/0005-2787(70)90180-2. [DOI] [PubMed] [Google Scholar]
  36. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
  37. Yap S. H., Strair R. K., Shafritz D. A. Identification of albumin mRNPs in the cytosol of fasting rat liver and influence of tryptophan or a mixture of amino acids. Biochem Biophys Res Commun. 1978 Jul 28;83(2):427–433. doi: 10.1016/0006-291x(78)91008-2. [DOI] [PubMed] [Google Scholar]
  38. Zähringer J., Baliga B. S., Munro H. N. Increased levels of microsomal albumin-mRNA in the liver of nephrotic rats. FEBS Lett. 1976 Mar 1;62(3):322–325. doi: 10.1016/0014-5793(76)80085-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES