Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 May;83(5):1682–1690. doi: 10.1172/JCI114068

Impaired oxygen utilization. A new mechanism for the hepatotoxicity of ethanol in sub-human primates.

C S Lieber 1, E Baraona 1, R Hernández-Muñoz 1, S Kubota 1, N Sato 1, S Kawano 1, T Matsumura 1, N Inatomi 1
PMCID: PMC303877  PMID: 2708529

Abstract

The role of oxygenation in the pathogenesis of alcoholic liver injury was investigated in six baboons fed alcohol chronically and in six pair-fed controls. All animals fed alcohol developed fatty liver with, in addition, fibrosis in three. No evidence for hypoxia was found, both in the basal state and after ethanol at moderate (30 mM) or high (55 mM) levels, as shown by unchanged or even increased hepatic venous partial pressure of O2 and O2 saturation of hemoglobin in the tissue. In controls, ethanol administration resulted in enhanced O2 consumption (offset by a commitant increase in splanchnic blood flow), whereas in alcohol fed animals, there was no increase. At the moderate ethanol dose, the flow-independent O2 extraction, measured by reflectance spectroscopy on the liver surface, tended to increase in control animals only, whereas a significant decrease was observed after the high ethanol dose in the alcohol-treated baboons. This was associated with a marked shift in the mitochondrial redox level in the alcohol-fed (but not in control) baboons, with striking rises in splanchnic output of glutamic dehydrogenase and acetaldehyde, reflecting mitochondrial injury. Increased acetaldehyde, in turn, may aggravate the mitochondrial damage and exacerbate defective O2 utilization. Thus impaired O2 consumption rather than lack of O2 supply characterizes liver injury produced by high ethanol levels in baboons fed alcohol chronically.

Full text

PDF
1682

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai M., Leo M. A., Nakano M., Gordon E. R., Lieber C. S. Biochemical and morphological alterations of baboon hepatic mitochondria after chronic ethanol consumption. Hepatology. 1984 Mar-Apr;4(2):165–174. doi: 10.1002/hep.1840040201. [DOI] [PubMed] [Google Scholar]
  2. Baraona E., Di Padova C., Tabasco J., Lieber C. S. Red blood cells: a new major modality for acetaldehyde transport from liver to other tissues. Life Sci. 1987 Jan 19;40(3):253–258. doi: 10.1016/0024-3205(87)90340-7. [DOI] [PubMed] [Google Scholar]
  3. Bendtsen F., Henriksen J. H., Widding A., Winkler K. Hepatic venous oxygen content in alcoholic cirrhosis and non-cirrhotic alcoholic liver disease. Liver. 1987 Jun;7(3):176–181. doi: 10.1111/j.1600-0676.1987.tb00339.x. [DOI] [PubMed] [Google Scholar]
  4. Bredfeldt J. E., Riley E. M., Groszmann R. J. Compensatory mechanisms in response to an elevated hepatic oxygen consumption in chronically ethanol-fed rats. Am J Physiol. 1985 May;248(5 Pt 1):G507–G511. doi: 10.1152/ajpgi.1985.248.5.G507. [DOI] [PubMed] [Google Scholar]
  5. CAESAR J., SHALDON S., CHIANDUSSI L., GUEVARA L., SHERLOCK S. The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci. 1961 Aug;21:43–57. [PubMed] [Google Scholar]
  6. CASTENFORS H., HULTMAN E., JOSEPHSON B. Effect of intravenous infusions of ethyl alcohol on estimated hepatic blood flow in man. J Clin Invest. 1960 May;39:776–781. doi: 10.1172/JCI104094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carmichael F. J., Saldivia V., Israel Y., McKaigney J. P., Orrego H. Ethanol-induced increase in portal hepatic blood flow: interference by anesthetic agents. Hepatology. 1987 Jan-Feb;7(1):89–94. doi: 10.1002/hep.1840070119. [DOI] [PubMed] [Google Scholar]
  8. Di Padova C., Alderman J., Lieber C. S. Improved methods for the measurement of acetaldehyde concentrations in plasma and red blood cells. Alcohol Clin Exp Res. 1986 Jan-Feb;10(1):86–89. doi: 10.1111/j.1530-0277.1986.tb05621.x. [DOI] [PubMed] [Google Scholar]
  9. Di Padova C., Worner T. M., Lieber C. S. Effect of abstinence on the blood acetaldehyde response to a test dose of alcohol in alcoholics. Alcohol Clin Exp Res. 1987 Dec;11(6):559–561. doi: 10.1111/j.1530-0277.1987.tb00174.x. [DOI] [PubMed] [Google Scholar]
  10. Domschke S., Domschke W., Lieber C. S. Hepatic redox state: attenuation of the acute effects of ethanol induced by chronic ethanol consumption. Life Sci. 1974 Oct 1;15(7):1327–1334. doi: 10.1016/0024-3205(74)90314-2. [DOI] [PubMed] [Google Scholar]
  11. Edwards D. J., Babiak L. M., Beckman H. B. The effect of a single oral dose of ethanol on hepatic blood flow in man. Eur J Clin Pharmacol. 1987;32(5):481–484. doi: 10.1007/BF00637674. [DOI] [PubMed] [Google Scholar]
  12. Ellis G., Goldberg D. M. Optimal conditions for the kinetic assay of serum glutamate dehydrogenase activity at 37 degrees C. Clin Chem. 1972 Jun;18(6):523–527. [PubMed] [Google Scholar]
  13. French S. W., Benson N. C., Sun P. S. Centrilobular liver necrosis induced by hypoxia in chronic ethanol-fed rats. Hepatology. 1984 Sep-Oct;4(5):912–917. doi: 10.1002/hep.1840040521. [DOI] [PubMed] [Google Scholar]
  14. Hadengue A., Moreau R., Lee S. S., Gaudin C., Rueff B., Lebrec D. Liver hypermetabolism during alcohol withdrawal in humans. Role of sympathetic overactivity. Gastroenterology. 1988 Apr;94(4):1047–1052. doi: 10.1016/0016-5085(88)90565-3. [DOI] [PubMed] [Google Scholar]
  15. Hallé P., Paré P., Kaptein E., Kanel G., Redeker A. G., Reynolds T. B. Double-blind, controlled trial of propylthiouracil in patients with severe acute alcoholic hepatitis. Gastroenterology. 1982 May;82(5 Pt 1):925–931. [PubMed] [Google Scholar]
  16. Hasumura Y., Teschke R., Lieber C. S. Characteristics of acetaldehyde oxidation in rat liver mitochondria. J Biol Chem. 1976 Aug 25;251(16):4908–4913. [PubMed] [Google Scholar]
  17. Hayashi N., Kasahara A., Kurosawa K., Sasaki Y., Fusamoto H., Sato N., Kamada T. Oxygen supply to the liver in patients with alcoholic liver disease assessed by organ-reflectance spectrophotometry. Gastroenterology. 1985 Apr;88(4):881–886. doi: 10.1016/s0016-5085(85)80003-2. [DOI] [PubMed] [Google Scholar]
  18. Hayashi N., Kasahara A., Kurosawa K., Yoshihara H., Sasaki Y., Fusamoto H., Sato N., Kamada T. Hepatic hemodynamics in alcoholic liver injuries assessed by reflectance spectrophotometry. Alcohol. 1985 May-Jun;2(3):453–456. doi: 10.1016/0741-8329(85)90114-4. [DOI] [PubMed] [Google Scholar]
  19. Iseri O. A., Lieber C. S., Gottlieb L. S. The ultrastructure of fatty liver induced by prolonged ethanol ingestion. Am J Pathol. 1966 Apr;48(4):535–555. [PMC free article] [PubMed] [Google Scholar]
  20. Israel Y., Kalant H., Orrego H., Khanna J. M., Videla L., Phillips J. M. Experimental alcohol-induced hepatic necrosis: suppression by propylthiouracil. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1137–1141. doi: 10.1073/pnas.72.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Israel Y., Orrego H. Hepatocyte demand and substrate supply as factors in the susceptibility to alcoholic liver injury: pathogenesis and prevention. Clin Gastroenterol. 1981 May;10(2):355–373. [PubMed] [Google Scholar]
  22. Jauhonen P., Baraona E., Miyakawa H., Lieber C. S. Mechanism for selective perivenular hepatotoxicity of ethanol. Alcohol Clin Exp Res. 1982 Summer;6(3):350–357. doi: 10.1111/j.1530-0277.1982.tb04990.x. [DOI] [PubMed] [Google Scholar]
  23. Jauhonen V. P., Baraona E., Lieber C. S., Hassinen I. E. Dependence of ethanol-induced redox shift on hepatic oxygen tensions prevailing in vivo. Alcohol. 1985 Jan-Feb;2(1):163–167. doi: 10.1016/0741-8329(85)90036-9. [DOI] [PubMed] [Google Scholar]
  24. KESSLER B. J., LIEBLER J. B., BRONFIN G. J., SASS M. The hepatic blood flow and splanchnic oxygen consumption in alcoholic fatty liver. J Clin Invest. 1954 Oct;33(10):1338–1345. doi: 10.1172/JCI103010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kasahara A., Hayashi N., Kurosawa K., Sasaki Y., Sato N., Kamada T. Hepatic hemodynamics and oxygen consumption in alcoholic fatty liver assessed by organ-reflectance spectrophotometry and the hydrogen clearance method. Hepatology. 1986 Jan-Feb;6(1):87–91. doi: 10.1002/hep.1840060116. [DOI] [PubMed] [Google Scholar]
  26. Korsten M. A., Matsuzaki S., Feinman L., Lieber C. S. High blood acetaldehyde levels after ethanol administration. Difference between alcoholic and nonalcoholic subjects. N Engl J Med. 1975 Feb 20;292(8):386–389. doi: 10.1056/NEJM197502202920802. [DOI] [PubMed] [Google Scholar]
  27. LIEBER C. S., JONES D. P., DECARLI L. M. EFFECTS OF PROLONGED ETHANOL INTAKE: PRODUCTION OF FATTY LIVER DESPITE ADEQUATE DIETS. J Clin Invest. 1965 Jun;44:1009–1021. doi: 10.1172/JCI105200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LUNDQUIST F., TYGSTRUP N., WINKLER K., MELLEMGAARD K., MUNCK-PETERSEN S. Ethanol metabolism and production of free acetate in the human liver. J Clin Invest. 1962 May;41:955–961. doi: 10.1172/JCI104574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lane B. P., Lieber C. S. Ultrastructural alterations in human hepatocytes following ingestion of ethanol with adequate diets. Am J Pathol. 1966 Oct;49(4):593–603. [PMC free article] [PubMed] [Google Scholar]
  30. Lieber C. S., DeCarli L. M. An experimental model of alcohol feeding and liver injury in the baboon. J Med Primatol. 1974;3(3):153–163. doi: 10.1159/000459999. [DOI] [PubMed] [Google Scholar]
  31. Lieber C. S., Decarli L. M. Animal models of ethanol dependence and liver injury in rats and baboons. Fed Proc. 1976 Apr;35(5):1232–1236. [PubMed] [Google Scholar]
  32. Lieber C. S., Rubin E. Alcoholic fatty liver in man on a high protein and low fat diet. Am J Med. 1968 Feb;44(2):200–206. doi: 10.1016/0002-9343(68)90151-4. [DOI] [PubMed] [Google Scholar]
  33. Linnoila M., Mefford I., Nutt D., Adinoff B. NIH conference. Alcohol withdrawal and noradrenergic function. Ann Intern Med. 1987 Dec;107(6):875–889. doi: 10.7326/0003-4819-107-6-875. [DOI] [PubMed] [Google Scholar]
  34. MENDELOFF A. I. Effect of intravenous infusions of ethanol upon estimated hepatic blood flow in man. J Clin Invest. 1954 Oct;33(10):1298–1302. doi: 10.1172/JCI103005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Matsuzaki S., Sieber C. S. Increased susceptibility of hepatic mitochondria to the toxicity of acetaldehyde after chronic ethanol consumption. Biochem Biophys Res Commun. 1977 Apr 25;75(4):1059–1065. doi: 10.1016/0006-291x(77)91489-9. [DOI] [PubMed] [Google Scholar]
  36. McKaigney J. P., Carmichael F. J., Saldivia V., Israel Y., Orrego H. Role of ethanol metabolism in the ethanol-induced increase in splanchnic circulation. Am J Physiol. 1986 Apr;250(4 Pt 1):G518–G523. doi: 10.1152/ajpgi.1986.250.4.G518. [DOI] [PubMed] [Google Scholar]
  37. Nomura F., Pikkarainen P. H., Jauhonen P., Arai M., Gordon E. R., Baraona E., Lieber C. S. Effect of ethanol administration on the metabolism of ethanol in baboons. J Pharmacol Exp Ther. 1983 Oct;227(1):78–83. [PubMed] [Google Scholar]
  38. Orrego H., Blake J. E., Blendis L. M., Compton K. V., Israel Y. Long-term treatment of alcoholic liver disease with propylthiouracil. N Engl J Med. 1987 Dec 3;317(23):1421–1427. doi: 10.1056/NEJM198712033172301. [DOI] [PubMed] [Google Scholar]
  39. Orrego H., Kalant H., Israel Y., Blake J., Medline A., Rankin J. G., Armstrong A., Kapur B. Effect of short-term therapy with propylthiouracil in patients with alcoholic liver disease. Gastroenterology. 1979 Jan;76(1):105–115. [PubMed] [Google Scholar]
  40. Pikkarainen P. H., Gordon E. R., Lebsack M. E., Lieber C. S. Determinants of plasma free acetaldehyde levels during the oxidation of ethanol: effects of chronic ethanol feeding. Biochem Pharmacol. 1981 Apr 1;30(7):799–802. doi: 10.1016/0006-2952(81)90168-4. [DOI] [PubMed] [Google Scholar]
  41. Pikkarainen P. H., Lieber C. S. Concentration dependency of ethanol elimination rates in baboons: effect of chronic alcohol consumption. Alcohol Clin Exp Res. 1980 Jan;4(1):40–43. doi: 10.1111/j.1530-0277.1980.tb04789.x. [DOI] [PubMed] [Google Scholar]
  42. Popper H., Lieber C. S. Histogenesis of alcoholic fibrosis and cirrhosis in the baboon. Am J Pathol. 1980 Mar;98(3):695–716. [PMC free article] [PubMed] [Google Scholar]
  43. Rubin E., Lieber C. S. Experimental alcoholic hepatic injury in man: ultrastructural changes. Fed Proc. 1967 Sep;26(5):1458–1467. [PubMed] [Google Scholar]
  44. SMYTHE C. M., HEINEMANN H. O., BRADLEY S. E. Estimated hepatic blood flow in the dog; effect of ethyl alcohol on it, renal blood flow, cardiac output and arterial pressure. Am J Physiol. 1953 Mar;172(3):737–742. doi: 10.1152/ajplegacy.1953.172.3.737. [DOI] [PubMed] [Google Scholar]
  45. STEIN S. W., LIEBER C. S., LEEVY C. M., CHERRICK G. R., ABELMANN W. H. THE EFFECT OF ETHANOL UPON SYSTEMIC AND HEPATIC BLOOD FLOW IN MAN. Am J Clin Nutr. 1963 Aug;13:68–74. doi: 10.1093/ajcn/13.2.68. [DOI] [PubMed] [Google Scholar]
  46. Salaspuro M. P., Shaw S., Jayatilleke E., Ross W. A., Lieber C. S. Attenuation of the ethanol-induced hepatic redox change after chronic alcohol consumption in baboons: metabolic consequences in vivo and in vitro. Hepatology. 1981 Jan-Feb;1(1):33–38. doi: 10.1002/hep.1840010106. [DOI] [PubMed] [Google Scholar]
  47. Sato N., Kamada T., Kawano S., Hayashi N., Kishida Y., Meren H., Yoshihara H., Abe H. Effect of acute and chronic ethanol consumption on hepatic tissue oxygen tension in rats. Pharmacol Biochem Behav. 1983;18 (Suppl 1):443–447. doi: 10.1016/0091-3057(83)90215-0. [DOI] [PubMed] [Google Scholar]
  48. Sato N., Matsumura T., Shichiri M., Kamada T., Abe H., Hagihara B. Hemoperfusion, rate of oxygen consumption and redox levels of mitochondrial cytochrome c (+c1) in liver in situ of anesthetized rat measured by reflectance spectrophotometry. Biochim Biophys Acta. 1981 Jan 14;634(1):1–10. doi: 10.1016/0005-2728(81)90122-5. [DOI] [PubMed] [Google Scholar]
  49. Shaw S., Heller E. A., Friedman H. S., Bara ona E., Lieber C. S. Increased hepatic oxygenation following ethanol administration in the baboon. Proc Soc Exp Biol Med. 1977 Dec;156(3):509–513. doi: 10.3181/00379727-156-39968. [DOI] [PubMed] [Google Scholar]
  50. Thurman R. G., Ji S., Matsumura T., Lemasters J. J. Is hypoxia involved in the mechanism of alcohol-induced liver injury? Fundam Appl Toxicol. 1984 Apr;4(2 Pt 1):125–133. doi: 10.1016/0272-0590(84)90112-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES