Abstract
We studied the vasomotion of epicardial coronary arteries during exercise and tested the hypotheses that abnormal vasoconstriction is related to the presence of atherosclerosis and may be related to endothelial dilator dysfunction. During cardiac catheterization quantitative coronary angiography was performed in 21 patients during supine bicycle exercise. 21 of 28 smooth, angiographically normal vessel segments dilated (14.0 +/- 1.8%) during exercise; four smooth segments did not change whereas only three constricted. In contrast, 15 of 16 vessel segments with irregularities constricted in response to exercise (17.0 +/- 0.1%) with only one segment dilating. All 10 stenotic segments constricted to exercise (23 +/- 4%). Six patients also received intracoronary acetylcholine before exercise to test endothelium-dependent dilator function. In five of six patients all nine vessel segments showed the same directional response to acetylcholine and exercise. Three irregular and two stenotic segments constricted with acetylcholine (51 +/- 21%) and exercise (9.0 +/- 0.6%). In contrast, four smooth segments dilated to acetylcholine (19 +/- 6%) and exercise (9 +/- 1%). Both exercise and acetylcholine generally dilated smooth but constricted irregular and stenosed coronary segments. It appears likely that atherosclerosis plays an important role in the abnormal vasomotion of diseased coronary arteries during exercise and the pattern of abnormality suggests impairment of vasodilator function.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987 Jan;79(1):170–174. doi: 10.1172/JCI112779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. G., Bolson E. L., Dodge H. T. Dynamic mechanisms in human coronary stenosis. Circulation. 1984 Dec;70(6):917–922. doi: 10.1161/01.cir.70.6.917. [DOI] [PubMed] [Google Scholar]
- Busse R., Trogisch G., Bassenge E. The role of endothelium in the control of vascular tone. Basic Res Cardiol. 1985 Sep-Oct;80(5):475–490. doi: 10.1007/BF01907912. [DOI] [PubMed] [Google Scholar]
- Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
- Deanfield J. E., Shea M., Ribiero P., de Landsheere C. M., Wilson R. A., Horlock P., Selwyn A. P. Transient ST-segment depression as a marker of myocardial ischemia during daily life. Am J Cardiol. 1984 Dec 1;54(10):1195–1200. doi: 10.1016/s0002-9149(84)80066-1. [DOI] [PubMed] [Google Scholar]
- Fish R. D., Nabel E. G., Selwyn A. P., Ludmer P. L., Mudge G. H., Kirshenbaum J. M., Schoen F. J., Alexander R. W., Ganz P. Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest. 1988 Jan;81(1):21–31. doi: 10.1172/JCI113297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freiman P. C., Mitchell G. G., Heistad D. D., Armstrong M. L., Harrison D. G. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res. 1986 Jun;58(6):783–789. doi: 10.1161/01.res.58.6.783. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Mügge A., Frölich J. C. Endothelium-dependent relaxation of human epicardial coronary arteries: frequent lack of effect of acetylcholine. Eur J Pharmacol. 1986 Sep 9;128(3):277–281. doi: 10.1016/0014-2999(86)90778-8. [DOI] [PubMed] [Google Scholar]
- Gage J. E., Hess O. M., Murakami T., Ritter M., Grimm J., Krayenbuehl H. P. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation. 1986 May;73(5):865–876. doi: 10.1161/01.cir.73.5.865. [DOI] [PubMed] [Google Scholar]
- Ganz W., Tamura K., Marcus H. S., Donoso R., Yoshida S., Swan H. J. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation. 1971 Aug;44(2):181–195. doi: 10.1161/01.cir.44.2.181. [DOI] [PubMed] [Google Scholar]
- Heistad D. D., Armstrong M. L., Marcus M. L., Piegors D. J., Mark A. L. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res. 1984 Jun;54(6):711–718. doi: 10.1161/01.res.54.6.711. [DOI] [PubMed] [Google Scholar]
- Hintze T. H., Vatner S. F. Reactive dilation of large coronary arteries in conscious dogs. Circ Res. 1984 Jan;54(1):50–57. doi: 10.1161/01.res.54.1.50. [DOI] [PubMed] [Google Scholar]
- Holtz J., Förstermann U., Pohl U., Giesler M., Bassenge E. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol. 1984 Nov-Dec;6(6):1161–1169. [PubMed] [Google Scholar]
- Horio Y., Yasue H., Rokutanda M., Nakamura N., Ogawa H., Takaoka K., Matsuyama K., Kimura T. Effects of intracoronary injection of acetylcholine on coronary arterial diameter. Am J Cardiol. 1986 Apr 15;57(11):984–989. doi: 10.1016/0002-9149(86)90743-5. [DOI] [PubMed] [Google Scholar]
- Klein L. W., Segal B. L., Helfant R. H. Dynamic coronary stenosis behavior in classic angina pectoris: active process or passive response? J Am Coll Cardiol. 1987 Aug;10(2):311–313. doi: 10.1016/s0735-1097(87)80012-8. [DOI] [PubMed] [Google Scholar]
- Ludmer P. L., Selwyn A. P., Shook T. L., Wayne R. R., Mudge G. H., Alexander R. W., Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986 Oct 23;315(17):1046–1051. doi: 10.1056/NEJM198610233151702. [DOI] [PubMed] [Google Scholar]
- Nabel E. G., Ganz P., Gordon J. B., Alexander R. W., Selwyn A. P. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation. 1988 Jan;77(1):43–52. doi: 10.1161/01.cir.77.1.43. [DOI] [PubMed] [Google Scholar]
- Peuler J. D., Johnson G. A. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977 Sep 1;21(5):625–636. doi: 10.1016/0024-3205(77)90070-4. [DOI] [PubMed] [Google Scholar]
- Pohl U., Holtz J., Busse R., Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension. 1986 Jan;8(1):37–44. doi: 10.1161/01.hyp.8.1.37. [DOI] [PubMed] [Google Scholar]
- Schroeder J. S., Bolen J. L., Quint R. A., Clark D. A., Hayden W. G., Higgins C. B., Wexler L. Provocation of coronary spasm with ergonovine maleate. New test with results in 57 patients undergoing coronary arteriography. Am J Cardiol. 1977 Oct;40(4):487–491. doi: 10.1016/0002-9149(77)90060-1. [DOI] [PubMed] [Google Scholar]
- Shimokawa H., Tomoike H., Nabeyama S., Yamamoto H., Araki H., Nakamura M., Ishii Y., Tanaka K. Coronary artery spasm induced in atherosclerotic miniature swine. Science. 1983 Aug 5;221(4610):560–562. doi: 10.1126/science.6408736. [DOI] [PubMed] [Google Scholar]
- Spears J. R., Sandor T., Als A. V., Malagold M., Markis J. E., Grossman W., Serur J. R., Paulin S. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation. 1983 Aug;68(2):453–461. doi: 10.1161/01.cir.68.2.453. [DOI] [PubMed] [Google Scholar]
- Vatner S. F., Hintze T. H., Macho P. Regulation of large coronary arteries by beta-adrenergic mechanisms in the conscious dog. Circ Res. 1982 Jul;51(1):56–66. doi: 10.1161/01.res.51.1.56. [DOI] [PubMed] [Google Scholar]