Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Jul;84(1):83–91. doi: 10.1172/JCI114174

Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate.

F Y Liu 1, M G Cogan 1
PMCID: PMC303956  PMID: 2544631

Abstract

These studies explored the hypothesis that angiotensin II increases bicarbonate absorption in the proximal convoluted tubule (PCT) by decreasing intracellular cAMP. In vivo microperfusion was performed in rat PCT with measurements of bicarbonate absorption and of tubular fluid cAMP delivery, as a reflection of intracellular cAMP. Intravenous angiotensin II potently increased S1 PCT bicarbonate absorption (348 +/- 11 to 588 +/- 8 peq/min.min, P less than 0.001) and decreased tubular fluid cAMP (18 +/- 2 to 12 +/- 2 fmol/mm.min, P less than 0.05). Parathyroid hormone had the expected opposite effects, which were additive to those of angiotensin II. Over a wide range of hormonal activities, there was an excellent inverse relationship between hormonally modulated bicarbonate absorption and cAMP delivery. Pertussis toxin pretreatment significantly attenuated (by 35-45%) the angiotensin-induced increase in bicarbonate absorption and decrease in cAMP delivery, indicating Gi-protein intermediation. Luminal dibutyryl cAMP abolished the transport response to angiotensin II. In conclusion, these in vivo results suggest angiotensin II stimulates bicarbonate absorption in the S1 PCT by a G1-mediated depression in intracellular cAMP.

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B. Angiotensin II receptors negatively coupled to adenylate cyclase in rat aorta. Biochem Biophys Res Commun. 1983 Dec 16;117(2):420–428. doi: 10.1016/0006-291x(83)91217-2. [DOI] [PubMed] [Google Scholar]
  2. Baum M., Hays S. R. Phorbol myristate acetate and dioctanoylglycerol inhibit transport in rabbit proximal convoluted tubule. Am J Physiol. 1988 Jan;254(1 Pt 2):F9–14. doi: 10.1152/ajprenal.1988.254.1.F9. [DOI] [PubMed] [Google Scholar]
  3. Berk B. C., Aronow M. S., Brock T. A., Cragoe E., Jr, Gimbrone M. A., Jr, Alexander R. W. Angiotensin II-stimulated Na+/H+ exchange in cultured vascular smooth muscle cells. Evidence for protein kinase C-dependent and -independent pathways. J Biol Chem. 1987 Apr 15;262(11):5057–5064. [PubMed] [Google Scholar]
  4. Blonde L., Wehmann R. E., Steiner A. L. Plasma clearance rates and renal clearance of 3H-labeled cyclic AMP and 3H-labeled cyclic GMP in the dog. J Clin Invest. 1974 Jan;53(1):163–172. doi: 10.1172/JCI107534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broadus A. E., Kaminsky N. I., Hardman J. G., Sutherland E. W., Liddle G. W. Kinetic parameters and renal clearances of plasma adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in man. J Clin Invest. 1970 Dec;49(12):2222–2236. doi: 10.1172/JCI106441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butlen D., Jard S. Renal handling of 3'-5'-cyclic AMP in the rat. The possible role of luminal 3'-5'-cyclic AMP in the tubular reabsorption of phosphate. Pflugers Arch. 1972;331(2):172–190. doi: 10.1007/BF00587260. [DOI] [PubMed] [Google Scholar]
  7. Crane J. K., Campanile C. P., Garrison J. C. The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production. J Biol Chem. 1982 May 10;257(9):4959–4965. [PubMed] [Google Scholar]
  8. Dominguez J. H., Snowdowne K. W., Freudenrich C. C., Brown T., Borle A. B. Intracellular messenger for action of angiotensin II on fluid transport in rabbit proximal tubule. Am J Physiol. 1987 Mar;252(3 Pt 2):F423–F428. doi: 10.1152/ajprenal.1987.252.3.F423. [DOI] [PubMed] [Google Scholar]
  9. Douglas J. G. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol. 1987 Jul;253(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1987.253.1.F1. [DOI] [PubMed] [Google Scholar]
  10. Enjalbert A., Sladeczek F., Guillon G., Bertrand P., Shu C., Epelbaum J., Garcia-Sainz A., Jard S., Lombard C., Kordon C. Angiotensin II and dopamine modulate both cAMP and inositol phosphate productions in anterior pituitary cells. Involvement in prolactin secretion. J Biol Chem. 1986 Mar 25;261(9):4071–4075. [PubMed] [Google Scholar]
  11. Hackenthal E., Aktories K., Jakobs K. H. Pertussis toxin attenuates angiotensin II-induced vasoconstriction and inhibition of renin release. Mol Cell Endocrinol. 1985 Sep;42(2):113–117. doi: 10.1016/0303-7207(85)90098-x. [DOI] [PubMed] [Google Scholar]
  12. Hatori N., Fine B. P., Nakamura A., Cragoe E., Jr, Aviv A. Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J Biol Chem. 1987 Apr 15;262(11):5073–5078. [PubMed] [Google Scholar]
  13. Huang C. L., Ives H. E., Cogan M. G. In vivo evidence that cGMP is the second messenger for atrial natriuretic factor. Proc Natl Acad Sci U S A. 1986 Oct;83(20):8015–8018. doi: 10.1073/pnas.83.20.8015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakobs K. H., Aktories K., Schultz G. Inhibition of adenylate cyclase by hormones and neurotransmitters. Adv Cyclic Nucleotide Res. 1981;14:173–187. [PubMed] [Google Scholar]
  15. Jard S., Cantau B., Jakobs K. H. Angiotensin II and alpha-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem. 1981 Mar 25;256(6):2603–2606. [PubMed] [Google Scholar]
  16. Kahn A. M., Dolson G. M., Hise M. K., Bennett S. C., Weinman E. J. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am J Physiol. 1985 Feb;248(2 Pt 2):F212–F218. doi: 10.1152/ajprenal.1985.248.2.F212. [DOI] [PubMed] [Google Scholar]
  17. Khanum A., Dufau M. L. Angiotensin II receptors and inhibitory actions in Leydig cells. J Biol Chem. 1988 Apr 15;263(11):5070–5074. [PubMed] [Google Scholar]
  18. Limbird L. E. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 1988 Aug;2(11):2686–2695. doi: 10.1096/fasebj.2.11.2840317. [DOI] [PubMed] [Google Scholar]
  19. Liu F. Y., Cogan M. G. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988 Aug;82(2):601–607. doi: 10.1172/JCI113638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu F. Y., Cogan M. G. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu F. Y., Cogan M. G. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. J Clin Invest. 1986 Dec;78(6):1547–1557. doi: 10.1172/JCI112747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu F. Y., Cogan M. G. Flow dependence of bicarbonate transport in the early (S1) proximal convoluted tubule. Am J Physiol. 1988 Jun;254(6 Pt 2):F851–F855. doi: 10.1152/ajprenal.1988.254.6.F851. [DOI] [PubMed] [Google Scholar]
  23. Marie J., Jard S. Angiotensin II inhibits adenylate cyclase from adrenal cortex glomerulosa zone. FEBS Lett. 1983 Aug 8;159(1-2):97–101. doi: 10.1016/0014-5793(83)80424-4. [DOI] [PubMed] [Google Scholar]
  24. Maunsbach A. B. Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res. 1966 Oct;16(3):239–258. doi: 10.1016/s0022-5320(66)80060-6. [DOI] [PubMed] [Google Scholar]
  25. McKinney T. D., Myers P. Bicarbonate transport by proximal tubules: effect of parathyroid hormone and dibutyryl cyclic AMP. Am J Physiol. 1980 Mar;238(3):F166–F174. doi: 10.1152/ajprenal.1980.238.3.F166. [DOI] [PubMed] [Google Scholar]
  26. Mellas J., Hammerman M. R. Phorbol ester-induced alkalinization of canine renal proximal tubular cells. Am J Physiol. 1986 Mar;250(3 Pt 2):F451–F459. doi: 10.1152/ajprenal.1986.250.3.F451. [DOI] [PubMed] [Google Scholar]
  27. Pobiner B. F., Hewlett E. L., Garrison J. C. Role of Ni in coupling angiotensin receptors to inhibition of adenylate cyclase in hepatocytes. J Biol Chem. 1985 Dec 25;260(30):16200–16209. [PubMed] [Google Scholar]
  28. Rossi N. F., Churchill P. C., Churchill M. C. Pertussis toxin reverses adenosine receptor-mediated inhibition of renin secretion in rat renal cortical slices. Life Sci. 1987 Feb 2;40(5):481–487. doi: 10.1016/0024-3205(87)90114-7. [DOI] [PubMed] [Google Scholar]
  29. Strewler G. J. Release of cAMP from a renal epithelial cell line. Am J Physiol. 1984 Mar;246(3 Pt 1):C224–C230. doi: 10.1152/ajpcell.1984.246.3.C224. [DOI] [PubMed] [Google Scholar]
  30. Torres V. E., Northrup T. E., Edwards R. M., Shah S. V., Dousa T. P. Modulation of cyclic nucleotides in islated rat glomeruli: role of histamine, carbamylcholine, parathyroid hormone, and angiotensin-II. J Clin Invest. 1978 Dec;62(6):1334–1343. doi: 10.1172/JCI109254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tremblay J., Gerzer R., Vinay P., Pang S. C., Béliveau R., Hamet P. The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett. 1985 Feb 11;181(1):17–22. doi: 10.1016/0014-5793(85)81105-4. [DOI] [PubMed] [Google Scholar]
  32. Vesely D. L. Angiotensin II stimulates guanylate cyclase activity in aorta, heart, and kidney. Am J Physiol. 1981 Apr;240(4):E391–E393. doi: 10.1152/ajpendo.1981.240.4.E391. [DOI] [PubMed] [Google Scholar]
  33. Welsh C., Dubyak G., Douglas J. G. Relationship between phospholipase C activation and prostaglandin E2 and cyclic adenosine monophosphate production in rabbit tubular epithelial cells. Effects of angiotensin, bradykinin, and arginine vasopressin. J Clin Invest. 1988 Mar;81(3):710–719. doi: 10.1172/JCI113376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woodcock E. A., Johnston C. I. Inhibition of adenylate cyclase by angiotensin II in rat renal cortex. Endocrinology. 1982 Nov;111(5):1687–1691. doi: 10.1210/endo-111-5-1687. [DOI] [PubMed] [Google Scholar]
  35. Woodcock E. A., Johnston C. I. Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin II. Endocrinology. 1984 Jul;115(1):337–341. doi: 10.1210/endo-115-1-337. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES