Abstract
The effect of various primary and secondary bile acids on the rates of synthesis of all major bile acids was studied in the live rat with an extracorporal bile duct. Bile acid synthesis was determined using HPLC based on mass or by isotope dilution. Derepressed rates of bile acid synthesis (30-54 h) were inhibited by an infusion of taurocholic acid only at a supraphysiological dose of 500 mumol/kg per h, but not at 300 mumol/kg per h, which approximates the initial bile acid secretion (250 mumol/kg per h). When administered together with taurocholic acid (200 mumol/kg per h) only a high dose of taurochenodeoxycholic acid (100 mumol/kg per h) decreased taurocholic but not tauromuricholic or taurochenodeoxycholic acid synthesis. The only bile acid suppressing taurocholic acid (36-71%) and taurochenodeoxycholic acid (up to 33%) formation at an infusion rate close to the normal portal flux was deoxy- or taurodeoxycholic acid at 15-50 mumol/kg per h. It may be concluded that deoxycholic acid and possibly other secondary bile acids are much more potent inhibitors than primary bile acids.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlberg J., Angelin B., Einarsson K., Hellstrom K., Leijd B. Influence of deoxycholic acid on biliary lipids in man. Clin Sci Mol Med. 1977 Sep;53(3):249–256. doi: 10.1042/cs0530249. [DOI] [PubMed] [Google Scholar]
- BENACERRAF B., BILBEY D., BIOZZI G., HALPERN B. N., STIFFEL C. The measurement of liver blood flow in partially hepatectomized rats. J Physiol. 1957 Apr 30;136(2):287–293. doi: 10.1113/jphysiol.1957.sp005759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertolotti M., Carulli N., Menozzi D., Zironi F., Digrisolo A., Pinetti A., Baldini M. G. In vivo evaluation of cholesterol 7 alpha-hydroxylation in humans: effect of disease and drug treatment. J Lipid Res. 1986 Dec;27(12):1278–1286. [PubMed] [Google Scholar]
- Botham K. M., Lawson M. E., Beckett G. J., Percy-Robb I. W., Boyd G. S. The effect of portal blood bile salt concentrations on bile salt synthesis in rat liver. Studies with isolated hepatocytes. Biochim Biophys Acta. 1981 Nov 23;666(2):238–245. doi: 10.1016/0005-2760(81)90113-2. [DOI] [PubMed] [Google Scholar]
- Carulli N., Ponz de Leon M., Loria P., Iori R., Rosi A., Romani M. Effect of the selective expansion of cholic acid pool on bile lipid composition: possible mechanism of bile acid induced biliary cholesterol desaturation. Gastroenterology. 1981 Sep;81(3):539–546. [PubMed] [Google Scholar]
- Carulli N., Ponz de Leon M., Zironi F., Iori R., Loria P. Bile acid feeding and hepatic sterol metabolism: effect of deoxycholic acid. Gastroenterology. 1980 Oct;79(4):637–641. [PubMed] [Google Scholar]
- Cronholm T., Sjövall J. Bile acids in portal blood of fats fed different diets and cholestyramine. Bile acids and steroids 189. Eur J Biochem. 1967 Nov;2(4):375–383. doi: 10.1111/j.1432-1033.1967.tb00148.x. [DOI] [PubMed] [Google Scholar]
- Danielsson H. Influence of dietary bile acids on formation of bile acids in rat. Steroids. 1973 Nov;22(5):667–676. doi: 10.1016/0039-128x(73)90114-1. [DOI] [PubMed] [Google Scholar]
- Danielsson H., Johansson G. Effects of long term feeding of chenodeoxycholic acid on biosynthesis and metabolism of bile acids in the rat. Gastroenterology. 1974 Jul;67(1):126–134. [PubMed] [Google Scholar]
- Danzinger R. C., Hofmann A. F., Thistle J. L., Schoenfield L. J. Effect of oral chenodeoxycholic acid on bile acid kinetics and biliary lipid composition in women with cholelithiasis. J Clin Invest. 1973 Nov;52(11):2809–2821. doi: 10.1172/JCI107477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis R. A., Highsmith W. E., McNeal M. M., Schexnayder J. A., Kuan J. C. Bile acid synthesis by cultured hepatocytes. Inhibition by mevinolin, but not by bile acids. J Biol Chem. 1983 Apr 10;258(7):4079–4082. [PubMed] [Google Scholar]
- Davis R. A., Musso C. A., Malone-McNeal M., Lattier G. R., Hyde P. M., Archambault-Schexnayder J., Straka M. Examination of bile acid negative feedback regulation in rats. J Lipid Res. 1988 Feb;29(2):202–211. [PubMed] [Google Scholar]
- Dowling R. H., Mack E., Small D. M. Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis, and pool size in the rhesus monkey. J Clin Invest. 1970 Feb;49(2):232–242. doi: 10.1172/JCI106232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duane W. C., McHale A. P., Hamilton J. N. Studies of feedback suppression of bile salt synthesis in the bile-fistula rat. J Lipid Res. 1988 Feb;29(2):212–214. [PubMed] [Google Scholar]
- ERIKSSON S. Biliary excretion of bile acids and cholesterol in bile fistula rats; bile acids and steroids. Proc Soc Exp Biol Med. 1957 Mar;94(3):578–582. doi: 10.3181/00379727-94-23018. [DOI] [PubMed] [Google Scholar]
- Einarsson K., Hellström K., Kallner M. Feedback regulation of bile acid formation in man. Metabolism. 1973 Dec;22(12):1477–1483. doi: 10.1016/0026-0495(73)90015-2. [DOI] [PubMed] [Google Scholar]
- Einarsson K., Hellström K., Kallner M. Influence of deoxycholic acid feeding on the elimination of cholesterol in normolipaemic subjects. Clin Sci Mol Med. 1974 Nov;47(5):425–433. doi: 10.1042/cs0470425. [DOI] [PubMed] [Google Scholar]
- Hall R., Kok E., Javitt N. B. Bile acid synthesis: down-regulation by monohydroxy bile acids. FASEB J. 1988 Feb;2(2):152–156. doi: 10.1096/fasebj.2.2.3342968. [DOI] [PubMed] [Google Scholar]
- Heuman D. M., Hernandez C. R., Hylemon P. B., Kubaska W. M., Hartman C., Vlahcevic Z. R. Regulation of bile acid synthesis. I. Effects of conjugated ursodeoxycholate and cholate on bile acid synthesis in chronic bile fistula rat. Hepatology. 1988 Mar-Apr;8(2):358–365. doi: 10.1002/hep.1840080228. [DOI] [PubMed] [Google Scholar]
- Hofmann A. F., Grundy S. M., Lachin J. M., Lan S. P., Baum R. A., Hanson R. F., Hersh T., Hightower N. C., Jr, Marks J. W., Mekhjian H. Pretreatment biliary lipid composition in white patients with radiolucent gallstones in the National Cooperative Gallstone Study. Gastroenterology. 1982 Oct;83(4):738–752. [PubMed] [Google Scholar]
- Kinugasa T., Uchida K., Kadowaki M., Takase H., Nomura Y., Saito Y. Effect of bile duct ligation on bile acid metabolism in rats. J Lipid Res. 1981 Feb;22(2):201–207. [PubMed] [Google Scholar]
- Kubaska W. M., Gurley E. C., Hylemon P. B., Guzelian P. S., Vlahcevic Z. R. Absence of negative feedback control of bile acid biosynthesis in cultured rat hepatocytes. J Biol Chem. 1985 Nov 5;260(25):13459–13463. [PubMed] [Google Scholar]
- Kuipers F., Havinga R., Bosschieter H., Toorop G. P., Hindriks F. R., Vonk R. J. Enterohepatic circulation in the rat. Gastroenterology. 1985 Feb;88(2):403–411. doi: 10.1016/0016-5085(85)90499-8. [DOI] [PubMed] [Google Scholar]
- Kuroki S., Mosbach E. H., Stenger R. J., Cohen B. I., McSherry C. K. Comparative effects of deoxycholate and 7-methyl-deoxycholate in the hamster. Hepatology. 1987 Mar-Apr;7(2):229–234. doi: 10.1002/hep.1840070205. [DOI] [PubMed] [Google Scholar]
- LaRusso N. F., Hoffman N. E., Hofmann A. F., Northfield T. C., Thistle J. L. Effect of primary bile acid ingestion on bile acid metabolism and biliary lipid secretion in gallstone patients. Gastroenterology. 1975 Dec;69(6):1301–1314. [PubMed] [Google Scholar]
- LaRusso N. F., Szczepanik P. A., Hofmann A. F. Effect of deoxycholic acid ingestion on bile acid metabolism and biliary lipid secretion in normal subjects. Gastroenterology. 1977 Jan;72(1):132–140. [PubMed] [Google Scholar]
- Lee M. J., Parke D. V., Whitehouse M. W. Regulation of cholesterol catabolism by bile salts and glycyrrhetic acid in vivo. Proc Soc Exp Biol Med. 1965 Oct;120(1):6–8. doi: 10.3181/00379727-120-30427. [DOI] [PubMed] [Google Scholar]
- Marcus S. N., Heaton K. W. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile--three inter-related factors. Gut. 1986 May;27(5):550–558. doi: 10.1136/gut.27.5.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki K., Nakayama F., Koga A. Effect of chenodeoxycholic and ursodeoxycholic acids on isolated adult human hepatocytes. Dig Dis Sci. 1984 Dec;29(12):1123–1130. doi: 10.1007/BF01317087. [DOI] [PubMed] [Google Scholar]
- Nilsell K., Angelin B., Leijd B., Einarsson K. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis. Gastroenterology. 1983 Dec;85(6):1248–1256. [PubMed] [Google Scholar]
- Pomare E. W., Low-Beer T. S. The selective inhibition of chenodeoxycholate synthesis by cholate metabolites in man. Clin Sci Mol Med. 1975 Apr;48(4):315–321. doi: 10.1042/cs0480315. [DOI] [PubMed] [Google Scholar]
- Pries J. M., Gustafson A., Wiegand D., Duane W. C. Taurocholate is more potent than cholate in suppression of bile salt synthesis in the rat. J Lipid Res. 1983 Feb;24(2):141–146. [PubMed] [Google Scholar]
- Raicht R. F., Cohen B. I., Sarwal A., Takahashi M. Ursodeoxycholic acid. Effects on sterol metabolism in rats. Biochim Biophys Acta. 1978 Oct 25;531(1):1–8. doi: 10.1016/0005-2760(78)90175-3. [DOI] [PubMed] [Google Scholar]
- Redinger R. N. The economy of the enterohepatic circulation of bile acids in the baboon. 2. Regulation of bile acid synthesis by enterohepatic circulation of bile acids. J Lipid Res. 1984 May;25(5):437–447. [PubMed] [Google Scholar]
- Rutgeerts P., Ghoos Y., Vantrappen G., Fevery J. Biliary lipid composition in patients with nonoperated Crohn's disease. Dig Dis Sci. 1986 Jan;31(1):27–32. doi: 10.1007/BF01347906. [DOI] [PubMed] [Google Scholar]
- Rutgeerts P., Ghoos Y., Vantrappen G. Kinetics of primary bile acids in patients with non-operated Crohn's disease. Eur J Clin Invest. 1982 Apr;12(2):135–143. doi: 10.1111/j.1365-2362.1982.tb00950.x. [DOI] [PubMed] [Google Scholar]
- Salen G., Nicolau G., Shefer S., Mosbach E. H. Hepatic cholesterol metabolism in patients with gallstones. Gastroenterology. 1975 Sep;69(3):676–684. [PubMed] [Google Scholar]
- Shefer S., Cheng F. W., Hauser S., Batta A. K., Salen G. Regulation of bile acid synthesis. Measurement of cholesterol 7 alpha-hydroxylase activity in rat liver microsomal preparations in the absence of endogenous cholesterol. J Lipid Res. 1981 Mar;22(3):532–536. [PubMed] [Google Scholar]
- Shefer S., Hauser S., Bekersky I., Mosbach E. H. Biochemical site of regulation of bile acid biosynthesis in the rat. J Lipid Res. 1970 Sep;11(5):404–411. [PubMed] [Google Scholar]
- Shefer S., Hauser S., Bekersky I., Mosbach E. H. Feedback regulation of bile acid biosynthesis in the rat. J Lipid Res. 1969 Nov;10(6):646–655. [PubMed] [Google Scholar]
- Shefer S., Hauser S., Mosbach E. H. 7-alpha-hydroxylation of cholestanol by rat liver microsomes. J Lipid Res. 1968 May;9(3):328–333. [PubMed] [Google Scholar]
- Singhal A. K., Finver-Sadowsky J., McSherry C. K., Mosbach E. H. Effect of cholesterol and bile acids on the regulation of cholesterol metabolism in hamster. Biochim Biophys Acta. 1983 Jul 12;752(2):214–222. doi: 10.1016/0005-2760(83)90115-7. [DOI] [PubMed] [Google Scholar]
- Spady D. K., Stange E. F., Bilhartz L. E., Dietschy J. M. Bile acids regulate hepatic low density lipoprotein receptor activity in the hamster by altering cholesterol flux across the liver. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1916–1920. doi: 10.1073/pnas.83.6.1916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stange E. F., Scheibner J., Lutz C., Ditschuneit H. Feedback regulation of bile acid synthesis in the rat by dietary vs. intravenous cholate or taurocholate. Hepatology. 1988 Jul-Aug;8(4):879–886. doi: 10.1002/hep.1840080429. [DOI] [PubMed] [Google Scholar]
- Stone B. G., Erickson S. K., Craig W. Y., Cooper A. D. Regulation of rat biliary cholesterol secretion by agents that alter intrahepatic cholesterol metabolism. Evidence for a distinct biliary precursor pool. J Clin Invest. 1985 Nov;76(5):1773–1781. doi: 10.1172/JCI112168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tietz P. S., Thistle J. L., Miller L. J., LaRusso N. F. Development and validation of a method for measuring the glycine and taurine conjugates of bile acids in bile by high-performance liquid chromatography. J Chromatogr. 1984 Dec 12;336(2):249–257. doi: 10.1016/s0378-4347(00)85148-8. [DOI] [PubMed] [Google Scholar]
- Vlahcevic Z. R., Bell C. C., Jr, Buhac I., Farrar J. T., Swell L. Diminished bile acid pool size in patients with gallstones. Gastroenterology. 1970 Aug;59(2):165–173. [PubMed] [Google Scholar]
- Vyvoda O. S., Coleman R., Holdsworth G. Effects of different bile salts upon the composition and morphology of a liver plasma membrane preparation. Deoxycholate is more membrane damaging than cholate and its conjugates. Biochim Biophys Acta. 1977 Feb 14;465(1):68–76. doi: 10.1016/0005-2736(77)90356-x. [DOI] [PubMed] [Google Scholar]
- Weis E. E., Barth C. A. The extracorporeal bile duct: a new model for determination of bile flow and bile composition in the intact rat. J Lipid Res. 1978 Sep;19(7):856–862. [PubMed] [Google Scholar]
- von Bergmann K., Epple-Gutsfeld M., Leiss O. Differences in the effects of chenodeoxycholic and ursodeoxycholic acid on biliary lipid secretion and bile acid synthesis in patients with gallstones. Gastroenterology. 1984 Jul;87(1):136–143. [PubMed] [Google Scholar]