Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Dec;84(6):1749–1756. doi: 10.1172/JCI114358

Genetic and environmental factors that regulate cytosolic epoxide hydrolase activity in normal human lymphocytes.

K K Norris 1, T M DeAngelo 1, E S Vesell 1
PMCID: PMC304051  PMID: 2592558

Abstract

To determine whether genetic mechanisms control large variations in cytosolic epoxide hydrolase (cEH) activity of unstimulated lymphocytes from normal human subjects, cEH activity was measured in (a) 6 sets of monozygotic (MZ) twins and 6 sets of dizygotic (DZ) twins; (b) 100 unrelated male subjects; and (c) 6 families. The twin study revealed predominantly genetic control (H2(1) = 0.95). Variability was markedly less within MZ (intrapair variance = 0.25) than DZ twins (intrapair variance = 6.33). In 100 unrelated male subjects the extent of interindividual variation was 11-fold. Unimodal distribution of values among 99 subjects encompassed a sixfold range. One outlier with very high activity clearly stood apart. Using the whole distribution curve we phenotyped members of six families. In the outlier's family, analysis of three generations suggested autosomal dominant transmission of high cEH activity. Analysis of the other 5 families and of 12 sets of twins, all from the large unimodal distribution, was consistent with either monogenic or polygenic control of variations within this mode. Several temporal host factors, including fever, the menstrual cycle, a 24-h fast, and diurnal variations, were investigated. Fever and fasting elevated cEH activity. Diurnal variations produced no observable alteration. During the menstrual cycle irregular fluctuations occurred.

Full text

PDF
1749

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Denlinger C. L., Stryker K. K., Slusher L. B., Vesell E. S. Studies on theophylline metabolism: autoinduction and inhibition by antipyrine. Clin Pharmacol Ther. 1987 May;41(5):522–530. doi: 10.1038/clpt.1987.67. [DOI] [PubMed] [Google Scholar]
  4. EVANS D. A., MANLEY K. A., McKUSICK V. A. Genetic control of isoniazid metabolism in man. Br Med J. 1960 Aug 13;2(5197):485–491. doi: 10.1136/bmj.2.5197.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Furst D. E., Gupta N., Paulus H. E. Salicylate metabolism in twins. Evidence suggesting a genetic influence and induction of salicylurate formation. J Clin Invest. 1977 Jul;60(1):32–42. doi: 10.1172/JCI108766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gill S. S., Ota K., Hammock B. D. Radiometric assays for mammalian epoxide hydrolases and glutathione S-transferase. Anal Biochem. 1983 May;131(1):273–282. doi: 10.1016/0003-2697(83)90166-5. [DOI] [PubMed] [Google Scholar]
  7. Glatt H. R., Wölfel T., Oesch F. Determination of epoxide hydrolase activity in whole cells (human lymphocytes) and activation by benzoflavones. Biochem Biophys Res Commun. 1983 Jan 27;110(2):525–529. doi: 10.1016/0006-291x(83)91181-6. [DOI] [PubMed] [Google Scholar]
  8. Harris R., Ukaejiofo E. O. Tissue typing using a routine one-step lymphocyte separation procedure. Br J Haematol. 1970 Feb;18(2):229–235. doi: 10.1111/j.1365-2141.1970.tb01436.x. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Mahgoub A., Idle J. R., Dring L. G., Lancaster R., Smith R. L. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977 Sep 17;2(8038):584–586. doi: 10.1016/s0140-6736(77)91430-1. [DOI] [PubMed] [Google Scholar]
  11. Meijer J., Bergstrand A., DePierre J. W. Preparation and characterization of subcellular fractions from the liver of C57B1/6 mice, with special emphasis on their suitability for use in studies of epoxide hydrolase activities. Biochem Pharmacol. 1987 Apr 1;36(7):1139–1151. doi: 10.1016/0006-2952(87)90425-4. [DOI] [PubMed] [Google Scholar]
  12. Miller C. A., Slusher L. B., Vesell E. S. Polymorphism of theophylline metabolism in man. J Clin Invest. 1985 May;75(5):1415–1425. doi: 10.1172/JCI111843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oesch F. Drug detoxification: epoxide hydrolase. Prog Clin Biol Res. 1983;135:81–105. [PubMed] [Google Scholar]
  14. Penno M. B., Vesell E. S. Monogenic control of variations in antipyrine metabolite formation. New polymorphism of hepatic drug oxidation. J Clin Invest. 1983 Jun;71(6):1698–1709. doi: 10.1172/JCI110924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pero R., Hagmar L., Seidegård J., Bellander T., Attewell R., Skerfving S. Biological effects in a chemical factory with mutagenic exposure. II. Analysis of unscheduled DNA synthesis and adenosine diphosphate ribosyl transferase, epoxide hydrolase, and glutathione transferase in resting mononuclear leukocytes. Int Arch Occup Environ Health. 1988;60(6):445–451. doi: 10.1007/BF00381393. [DOI] [PubMed] [Google Scholar]
  16. Seidegård J., DePierre J. W., Pero R. W. Measurement and characterization of membrane-bound and soluble epoxide hydrolase activities in resting mononuclear leukocytes from human blood. Cancer Res. 1984 Sep;44(9):3654–3660. [PubMed] [Google Scholar]
  17. Spielberg S. P. Acetaminophen toxicity in human lymphocytes in vitro. J Pharmacol Exp Ther. 1980 May;213(2):395–398. [PubMed] [Google Scholar]
  18. Spielberg S. P. Pharmacogenetics and the fetus. N Engl J Med. 1982 Jul 8;307(2):115–116. doi: 10.1056/NEJM198207083070210. [DOI] [PubMed] [Google Scholar]
  19. Strickler S. M., Dansky L. V., Miller M. A., Seni M. H., Andermann E., Spielberg S. P. Genetic predisposition to phenytoin-induced birth defects. Lancet. 1985 Oct 5;2(8458):746–749. doi: 10.1016/s0140-6736(85)90629-4. [DOI] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vesell E. S. On the significance of host factors that affect drug disposition. Clin Pharmacol Ther. 1982 Jan;31(1):1–7. doi: 10.1038/clpt.1982.1. [DOI] [PubMed] [Google Scholar]
  22. Vesell E. S., Penno M. B. Assessment of methods to identify sources of interindividual pharmacokinetic variations. Clin Pharmacokinet. 1983 Sep-Oct;8(5):378–409. doi: 10.2165/00003088-198308050-00002. [DOI] [PubMed] [Google Scholar]
  23. Vesell E. S. The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther. 1979 Sep;26(3):275–286. doi: 10.1002/cpt1979263275. [DOI] [PubMed] [Google Scholar]
  24. Vesell E. S. Twin studies in pharmacogenetics. Hum Genet Suppl. 1978;(1):19–30. doi: 10.1007/978-3-642-67179-1_4. [DOI] [PubMed] [Google Scholar]
  25. Wang P., Meijer J., Guengerich F. P. Purification of human liver cytosolic epoxide hydrolase and comparison to the microsomal enzyme. Biochemistry. 1982 Nov 9;21(23):5769–5776. doi: 10.1021/bi00266a007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES