Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66

Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption.

S Hawgood, B J Benson, J Schilling, D Damm, J A Clements, R T White
PMCID: PMC304142  PMID: 3467361

Abstract

Pulmonary surfactant is a lipid-rich material that promotes alveolar stability by lowering the surface tension at the air-fluid interface in the peripheral air spaces. The turnover of surfactant phospholipids in the alveolar space is fast, and several lines of evidence suggest there is rapid formation and replenishment of the phospholipid surface film during normal respiration. Specific proteins may regulate these dynamic surface properties. The predominant surfactant protein is a well-characterized, lipid-associated glycoprotein, SP 28-36 (28-36 kDa). A second group of very hydrophobic proteins has recently been shown to affect the surface activity of surfactant phospholipids. We have isolated this group of hydrophobic proteins, herein called SP 5-18 (5-18 kDa), from canine surfactant and have shown by NH2-terminal sequence analysis that at least two proteins, SP 5-8 and SP 18, are present in this group. We have derived the full amino acid sequence of SP 18 from the nucleotide sequence of the cDNAs identified with oligonucleotide probes that were based on the NH2-terminal amino acids of SP 18. The protein isolated from extracellular surfactant appears to be a fragment of a much larger precursor protein (40 kDa). The amino acid sequence of SP 18 is markedly hydrophobic and contains two possible bilayer-spanning domains. We have shown that SP 18 and the glycoprotein SP 28-36 have a cooperative, calcium-dependent action in promoting the formation of phospholipid surface films.

Full text

PDF
66

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Benson B. J., Williams M. C., Sueishi K., Goerke J., Sargeant T. Role of calcium ions the structure and function of pulmonary surfactant. Biochim Biophys Acta. 1984 Mar 27;793(1):18–27. doi: 10.1016/0005-2760(84)90048-1. [DOI] [PubMed] [Google Scholar]
  3. Benson B., Hawgood S., Schilling J., Clements J., Damm D., Cordell B., White R. T. Structure of canine pulmonary surfactant apoprotein: cDNA and complete amino acid sequence. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6379–6383. doi: 10.1073/pnas.82.19.6379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  5. Claypool W. D., Wang D. L., Chander A., Fisher A. B. An ethanol/ether soluble apoprotein from rat lung surfactant augments liposome uptake by isolated granular pneumocytes. J Clin Invest. 1984 Sep;74(3):677–684. doi: 10.1172/JCI111483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engelman D. M., Henderson R., McLachlan A. D., Wallace B. A. Path of the polypeptide in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2023–2027. doi: 10.1073/pnas.77.4.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Epand R. M., Surewicz W. K. Effect of phase transitions on the interaction of peptides and proteins with phospholipids. Can J Biochem Cell Biol. 1984 Nov;62(11):1167–1173. doi: 10.1139/o84-150. [DOI] [PubMed] [Google Scholar]
  8. Franey R. J., Amador E. Serum cholesterol measurement based on ethanol extraction and ferric chloride-sulfuric acid. Clin Chim Acta. 1968 Aug;21(2):255–263. doi: 10.1016/0009-8981(68)90135-6. [DOI] [PubMed] [Google Scholar]
  9. Gagnon J., Finch P. R., Wood D. D., Moscarello M. A. Isolation of a highly purified myelin protein. Biochemistry. 1971 Dec 7;10(25):4756–4763. doi: 10.1021/bi00801a024. [DOI] [PubMed] [Google Scholar]
  10. Hawgood S., Benson B. J., Hamilton R. L., Jr Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry. 1985 Jan 1;24(1):184–190. doi: 10.1021/bi00322a026. [DOI] [PubMed] [Google Scholar]
  11. Hawgood S., Efrati H., Schilling J., Benson B. J. Chemical characterization of lung surfactant apoproteins: amino acid composition, N-terminal sequence and enzymic digestion. Biochem Soc Trans. 1985 Dec;13(6):1092–1096. doi: 10.1042/bst0131092. [DOI] [PubMed] [Google Scholar]
  12. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  13. King R. J., Carmichael M. C., Horowitz P. M. Reassembly of lipid-protein complexes of pulmonary surfactant. Proposed mechanism of interaction. J Biol Chem. 1983 Sep 10;258(17):10672–10680. [PubMed] [Google Scholar]
  14. King R. J., Clements J. A. Surface active materials from dog lung. I. Method of isolation. Am J Physiol. 1972 Sep;223(3):707–714. doi: 10.1152/ajplegacy.1972.223.3.707. [DOI] [PubMed] [Google Scholar]
  15. King R. J., Clements J. A. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972 Sep;223(3):715–726. doi: 10.1152/ajplegacy.1972.223.3.715. [DOI] [PubMed] [Google Scholar]
  16. King R. J., Klass D. J., Gikas E. G., Clements J. A. Isolation of apoproteins from canine surface active material. Am J Physiol. 1973 Apr;224(4):788–795. doi: 10.1152/ajplegacy.1973.224.4.788. [DOI] [PubMed] [Google Scholar]
  17. King R. J., MacBeth M. C. Interaction of the lipid and protein components of pulmonary surfactant. Role of phosphatidylglycerol and calcium. Biochim Biophys Acta. 1981 Oct 2;647(2):159–168. doi: 10.1016/0005-2736(81)90242-x. [DOI] [PubMed] [Google Scholar]
  18. King R. J. Pulmonary surfactant. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):1–8. doi: 10.1152/jappl.1982.53.1.1. [DOI] [PubMed] [Google Scholar]
  19. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Laursen R. A., Samiullah M., Lees M. B. The structure of bovine brain myelin proteolipid and its organization in myelin. Proc Natl Acad Sci U S A. 1984 May;81(9):2912–2916. doi: 10.1073/pnas.81.9.2912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lentz B. R., Clubb K. W., Barrow D. A., Meissner G. Ordered and disordered phospholipid domains coexist in membranes containing the calcium pump protein of sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1983 May;80(10):2917–2921. doi: 10.1073/pnas.80.10.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Magoon M. W., Wright J. R., Baritussio A., Williams M. C., Goerke J., Benson B. J., Hamilton R. L., Clements J. A. Subfractionation of lung surfactant. Implications for metabolism and surface activity. Biochim Biophys Acta. 1983 Jan 7;750(1):18–31. doi: 10.1016/0005-2760(83)90200-x. [DOI] [PubMed] [Google Scholar]
  25. Manabe T. Freeze-fracture study of alveolar lining layer in adult rat lungs. J Ultrastruct Res. 1979 Oct;69(1):86–97. doi: 10.1016/s0022-5320(79)80044-1. [DOI] [PubMed] [Google Scholar]
  26. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  27. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  28. Phizackerley P. J., Town M. H., Newman G. E. Hydrophobic proteins of lamellated osmiophilic bodies isolated from pig lung. Biochem J. 1979 Dec 1;183(3):731–736. doi: 10.1042/bj1830731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Redman C. M. Proteolipid involvement in human erythrocyte membrane function. Biochim Biophys Acta. 1972 Sep 1;282(1):123–134. doi: 10.1016/0005-2736(72)90316-1. [DOI] [PubMed] [Google Scholar]
  30. Ross G. F., Meuth J., Ohning B., Kim Y., Whitsett J. A. Purification of canine surfactant-associated glycoproteins A. Identification of a collagenase-resistant domain. Biochim Biophys Acta. 1986 Mar 28;870(2):267–278. doi: 10.1016/0167-4838(86)90231-1. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sigrist H., Sigrist-Nelson K., Gitler C. Single-phase butanol extraction: a new tool for proteolipid isolation. Biochem Biophys Res Commun. 1977 Jan 10;74(1):178–184. doi: 10.1016/0006-291x(77)91391-2. [DOI] [PubMed] [Google Scholar]
  33. Suzuki Y. Effect of protein, cholesterol, and phosphatidylglycerol on the surface activity of the lipid-protein complex reconstituted from pig pulmonary surfactant. J Lipid Res. 1982 Jan;23(1):62–69. [PubMed] [Google Scholar]
  34. Takahashi A., Fujiwara T. Proteolipid in bovine lung surfactant: its role in surfactant function. Biochem Biophys Res Commun. 1986 Mar 13;135(2):527–532. doi: 10.1016/0006-291x(86)90026-4. [DOI] [PubMed] [Google Scholar]
  35. Tanaka Y., Takei T., Kanazawa Y. Lung surfactants. II. Effects of fatty acids, triacylglycerols and protein on the activity of lung surfactant. Chem Pharm Bull (Tokyo) 1983 Nov;31(11):4100–4109. doi: 10.1248/cpb.31.4100. [DOI] [PubMed] [Google Scholar]
  36. Weinstein J. N., Blumenthal R., van Renswoude J., Kempf C., Klausner R. D. Charge clusters and the orientation of membrane proteins. J Membr Biol. 1982;66(3):203–212. doi: 10.1007/BF01868495. [DOI] [PubMed] [Google Scholar]
  37. White R. T., Damm D., Miller J., Spratt K., Schilling J., Hawgood S., Benson B., Cordell B. Isolation and characterization of the human pulmonary surfactant apoprotein gene. 1985 Sep 26-Oct 2Nature. 317(6035):361–363. doi: 10.1038/317361a0. [DOI] [PubMed] [Google Scholar]
  38. Whitsett J. A., Ohning B. L., Ross G., Meuth J., Weaver T., Holm B. A., Shapiro D. L., Notter R. H. Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts used for replacement therapy. Pediatr Res. 1986 May;20(5):460–467. doi: 10.1203/00006450-198605000-00016. [DOI] [PubMed] [Google Scholar]
  39. Wright J. R., Benson B. J., Williams M. C., Goerke J., Clements J. A. Protein composition of rabbit alveolar surfactant subfractions. Biochim Biophys Acta. 1984 Dec 21;791(3):320–332. doi: 10.1016/0167-4838(84)90343-1. [DOI] [PubMed] [Google Scholar]
  40. Wright J. R., Wager R. E., Hamilton R. L., Huang M., Clements J. A. Uptake of lung surfactant subfractions into lamellar bodies of adult rabbit lungs. J Appl Physiol (1985) 1986 Mar;60(3):817–825. doi: 10.1152/jappl.1986.60.3.817. [DOI] [PubMed] [Google Scholar]
  41. Yu S. H., Possmayer F. Reconstitution of surfactant activity by using the 6 kDa apoprotein associated with pulmonary surfactant. Biochem J. 1986 May 15;236(1):85–89. doi: 10.1042/bj2360085. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES