Abstract
A high peptidylglycine alpha-amidating mono-oxygenase (PAMase) activity has been measured in the pancreas of neonatal rats. A significant fraction of this activity is contained in the beta cells of the islets of Langerhans and is colocalized with thyrotropin-releasing hormone (TRH) and its precursor in secretory granules. The ontogenetic variation of PAMase activity in the pancrease parallels that of TRH concentrations, suggesting that this enzymatic activity is directly related to TRH biosynthesis. In addition, PAMase activity is able to generate TRH when incubated with less than Glu-His-Pro-Gly, a tetrapeptide present as a repetitive sequence in the TRH precursor. The perinatal evolution of the TRH precursor levels in the pancreas is similar to that of PAMase activity (unpublished results). Thus, the neonatal rat pancreas offers an endocrine model in which the levels of a neuropeptide precursor and an enzyme activity, involved in the posttranslational modification of this precursor, are similarly regulated. Our results suggest also that a fraction of PAMase activity may be produced outside of the beta cells and related to the biosynthesis of COOH-terminally amidated peptide(s) other than TRH. The ontogenetic changes in PAMase activity imply that the synthesis of this peptide(s) is high during the neonatal period, decreasing thereafter.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boler J., Enzmann F., Folkers K., Bowers C. Y., Schally A. V. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun. 1969 Nov 6;37(4):705–710. doi: 10.1016/0006-291x(69)90868-7. [DOI] [PubMed] [Google Scholar]
- Bradbury A. F., Finnie M. D., Smyth D. G. Mechanism of C-terminal amide formation by pituitary enzymes. Nature. 1982 Aug 12;298(5875):686–688. doi: 10.1038/298686a0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brand S. J., Andersen B. N., Rehfeld J. F. Complete tyrosine-O-sulphation of gastrin in neonatal rat pancreas. 1984 May 31-Jun 6Nature. 309(5967):456–458. doi: 10.1038/309456a0. [DOI] [PubMed] [Google Scholar]
- Burgus R., Dunn T. F., Desiderio D., Guillemin R. Structure moléculaire du facteur hypothalamique hypophysiotrope TRF d'origine ovine: mise en évidence par spectrométrie de masse de la séquence PCA-His-Pro-NH2. C R Acad Sci Hebd Seances Acad Sci D. 1969 Nov 12;269(19):1870–1873. [PubMed] [Google Scholar]
- Clamagirand C., Camier M., Boussetta H., Fahy C., Morel A., Nicolas P., Cohen P. An endopeptidase associated with bovine neurohypophysis secretory granules cleaves pro-ocytocin/neurophysin peptide at paired basic residues. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1190–1196. doi: 10.1016/0006-291x(86)90376-1. [DOI] [PubMed] [Google Scholar]
- Dutour A., Ouafik L., Castanas E., Boudouresque F., Oliver C. TRH and TRH-OH in the pancreas of adult and newborn rats. Life Sci. 1985 Jul 15;37(2):177–183. doi: 10.1016/0024-3205(85)90421-7. [DOI] [PubMed] [Google Scholar]
- Eipper B. A., Glembotski C. C., Mains R. E. Bovine intermediate pituitary alpha-amidation enzyme: preliminary characterization. Peptides. 1983 Nov-Dec;4(6):921–928. doi: 10.1016/0196-9781(83)90091-8. [DOI] [PubMed] [Google Scholar]
- Eipper B. A., Mains R. E., Glembotski C. C. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5144–5148. doi: 10.1073/pnas.80.16.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eipper B. A., Myers A. C., Mains R. E. Peptidyl-glycine alpha-amidation activity in tissues and serum of the adult rat. Endocrinology. 1985 Jun;116(6):2497–2504. doi: 10.1210/endo-116-6-2497. [DOI] [PubMed] [Google Scholar]
- Glembotski C. C., Eipper B. A., Mains R. E. Characterization of a peptide alpha-amidation activity from rat anterior pituitary. J Biol Chem. 1984 May 25;259(10):6385–6392. [PubMed] [Google Scholar]
- Gomez S., di Bello C., Lam T. H., Genet R., Morgat J. L., Fromageot P., Cohen P. C-terminal amidation of neuropeptides. Gly-Lys-Arg extension an efficient precursor of C-terminal amide. FEBS Lett. 1984 Feb 13;167(1):160–164. doi: 10.1016/0014-5793(84)80853-4. [DOI] [PubMed] [Google Scholar]
- Husain I., Tate S. S. Formation of the COOH-terminal amide group of thyrotropin-releasing-factor. FEBS Lett. 1983 Feb 21;152(2):277–281. doi: 10.1016/0014-5793(83)80395-0. [DOI] [PubMed] [Google Scholar]
- Kanmera T., Chaiken I. M. Pituitary enzyme conversion of putative synthetic oxytocin precursor intermediates. J Biol Chem. 1985 Aug 25;260(18):10118–10124. [PubMed] [Google Scholar]
- Kawano H., Daikoku S., Saito S. Location of thyrotropin-releasing hormone-like immunoreactivity in rat pancreas. Endocrinology. 1983 Mar;112(3):951–955. doi: 10.1210/endo-112-3-951. [DOI] [PubMed] [Google Scholar]
- Kizer J. S., Busby W. H., Jr, Cottle C., Youngblood W. W. Glycine-directed peptide amidation: presence in rat brain of two enzymes that convert p-Glu-His-Pro-Gly-OH into p-Glu-His-Pro-NH2 (thyrotropin-releasing hormone). Proc Natl Acad Sci U S A. 1984 May;81(10):3228–3232. doi: 10.1073/pnas.81.10.3228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koivusalo F., Leppäluoto J. High TRF immunoreactivity in purified pancreatic extracts of fetal and newborn rats. Life Sci. 1979 Apr 30;24(18):1655–1658. doi: 10.1016/0024-3205(79)90249-2. [DOI] [PubMed] [Google Scholar]
- Lechan R. M., Wu P., Jackson I. M., Wolf H., Cooperman S., Mandel G., Goodman R. H. Thyrotropin-releasing hormone precursor: characterization in rat brain. Science. 1986 Jan 10;231(4734):159–161. doi: 10.1126/science.3079917. [DOI] [PubMed] [Google Scholar]
- Leduque P., Wolf B., Aratan-Spire S., Dubois P. M., Czernichow P. Immunocytochemical location of thyrotropin-releasing hormone (TRH) in the B-cells of adult hypothyroid rat pancreas. Regul Pept. 1985 Apr;10(4):281–292. doi: 10.1016/0167-0115(85)90040-0. [DOI] [PubMed] [Google Scholar]
- Mains R. E., Eipper B. A. Secretion and regulation of two biosynthetic enzyme activities, peptidyl-glycine alpha-amidating monooxygenase and a carboxypeptidase, by mouse pituitary corticotropic tumor cells. Endocrinology. 1984 Nov;115(5):1683–1690. doi: 10.1210/endo-115-5-1683. [DOI] [PubMed] [Google Scholar]
- Mains R. E., Glembotski C. C., Eipper B. A. Peptide alpha-amidation activity in mouse anterior pituitary AtT-20 cell granules: properties and secretion. Endocrinology. 1984 May;114(5):1522–1530. doi: 10.1210/endo-114-5-1522. [DOI] [PubMed] [Google Scholar]
- Martino E., Lernmark A., Seo H., Steiner D. F., Refetoff S. High concentration of thyrotropin-releasing hormone in pancreatic islets. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4265–4267. doi: 10.1073/pnas.75.9.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morley J. E. Extrahypothalamic thyrotropin releasing hormone (TRH) -- its distribution and its functions. Life Sci. 1979 Oct 29;25(18):1539–1550. doi: 10.1016/0024-3205(79)90435-1. [DOI] [PubMed] [Google Scholar]
- Murthy A. S., Mains R. E., Eipper B. A. Purification and characterization of peptidylglycine alpha-amidating monooxygenase from bovine neurointermediate pituitary. J Biol Chem. 1986 Feb 5;261(4):1815–1822. [PubMed] [Google Scholar]
- Oliver C., Eskay R. L., Ben-Jonathan N., Porter J. C. Distribution and concentration of TRH in the rat brain. Endocrinology. 1974 Aug;95(2):540–546. doi: 10.1210/endo-95-2-540. [DOI] [PubMed] [Google Scholar]
- Ouafik L., Dutour A., Castanas E., Boudouresque F., Oliver C. Evidence for a precursor for TRH in the neonatal rat pancreas. Biochem Biophys Res Commun. 1985 Apr 30;128(2):664–669. doi: 10.1016/0006-291x(85)90097-x. [DOI] [PubMed] [Google Scholar]
- Richter K., Kawashima E., Egger R., Kreil G. Biosynthesis of thyrotropin releasing hormone in the skin of Xenopus laevis: partial sequence of the precursor deduced from cloned cDNA. EMBO J. 1984 Mar;3(3):617–621. doi: 10.1002/j.1460-2075.1984.tb01857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rupnow J. H., Hinkle P. M., Dixon J. E. A macromolecule which gives rise to thyrotropin releasing-hormone. Biochem Biophys Res Commun. 1979 Jul 27;89(2):721–728. doi: 10.1016/0006-291x(79)90689-2. [DOI] [PubMed] [Google Scholar]
- Sundler F., Håkanson R., Larsson L. I. Ontogeny of rat pancreatic polypeptide (PP) cells. Cell Tissue Res. 1977 Mar 16;178(3):303–306. doi: 10.1007/BF00218694. [DOI] [PubMed] [Google Scholar]
- von Zastrow M., Tritton T. R., Castle J. D. Exocrine secretion granules contain peptide amidation activity. Proc Natl Acad Sci U S A. 1986 May;83(10):3297–3301. doi: 10.1073/pnas.83.10.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
