Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jan;84(2):489–492. doi: 10.1073/pnas.84.2.489

A locus for a human hereditary cataract is closely linked to the gamma-crystallin gene family.

N H Lubsen, J H Renwick, L C Tsui, M L Breitman, J G Schoenmakers
PMCID: PMC304234  PMID: 3025877

Abstract

Within the human gamma-crystallin gene cluster polymorphic Taq I sites are present. These give rise to three sets of allelic fragments from the gamma-crystallin genes. Together these restriction fragment length polymorphisms define eight possible haplotypes, three of which (Q, R, and S) were found in the Dutch and English population. A fourth haplotype (P) was detected within a family in which a hereditary Coppock-like cataract of the embryonic lens nucleus occurs in heterozygotes. Haplotype P was found only in family members who suffered from cataract, and all family members who suffered from cataract had haplotype P. The absolute correlation between the presence of haplotype P and cataract within this family shows that the gamma-crystallin gene cluster and the locus for the Coppock-like cataract are closely linked [logarithm of odds (lod) score of 7.58 at its maximum at phi = 0]. This linkage provides genetic evidence that the primary cause of a cataract in humans could possibly be a lesion in a crystallin gene.

Full text

PDF
489

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bateman J. B., Spence M. A., Marazita M. L., Sparkes R. S. Genetic linkage analysis of autosomal dominant congenital cataracts. Am J Ophthalmol. 1986 Feb 15;101(2):218–225. doi: 10.1016/0002-9394(86)90599-4. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I., Karam J. H., Rutter W. J. Polymorphic DNA region adjacent to the 5' end of the human insulin gene. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5759–5763. doi: 10.1073/pnas.78.9.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloemendal H. Lens research: from protein to gene. Exp Eye Res. 1985 Oct;41(4):429–448. doi: 10.1016/s0014-4835(85)80002-6. [DOI] [PubMed] [Google Scholar]
  4. Carper D. Deficiency of functional messenger RNA for a developmentally regulated beta-crystallin polypeptide in a hereditary cataract. Science. 1982 Jul 30;217(4558):463–464. doi: 10.1126/science.6178163. [DOI] [PubMed] [Google Scholar]
  5. Conneally P. M., Wilson A. F., Merritt A. D., Helveston E. M., Palmer C. G., Wang L. Y. Confirmation of genetic heterogeneity in autosomal dominant forms of congenital cataracts from linkage studies. Cytogenet Cell Genet. 1978;22(1-6):295–297. doi: 10.1159/000130957. [DOI] [PubMed] [Google Scholar]
  6. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
  7. Garber A. T., Winkler C., Shinohara T., King C. R., Inana G., Piatigorsky J., Gold R. J. Selective loss of a family of gene transcripts in a hereditary murine cataract. Science. 1985 Jan 4;227(4682):74–77. doi: 10.1126/science.3964960. [DOI] [PubMed] [Google Scholar]
  8. Meakin S. O., Breitman M. L., Tsui L. C. Structural and evolutionary relationships among five members of the human gamma-crystallin gene family. Mol Cell Biol. 1985 Jun;5(6):1408–1414. doi: 10.1128/mcb.5.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moormann R. J., den Dunnen J. T., Bloemendal H., Schoenmakers J. G. Extensive intragenic sequence homology in two distinct rat lens gamma-crystallin cDNAs suggests duplications of a primordial gene. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6876–6880. doi: 10.1073/pnas.79.22.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moormann R. J., den Dunnen J. T., Heuyerjans J., Jongbloed R. J., van Leen R. W., Lubsen N. H., Schoenmakers J. G. Characterization of the rat gamma-crystallin gene family and its expression in the eye lens. J Mol Biol. 1985 Apr 5;182(3):419–430. doi: 10.1016/0022-2836(85)90201-3. [DOI] [PubMed] [Google Scholar]
  11. Piatigorsky J. Lens crystallins and their gene families. Cell. 1984 Oct;38(3):620–621. doi: 10.1016/0092-8674(84)90254-x. [DOI] [PubMed] [Google Scholar]
  12. Quax-Jeuken Y., Quax W., van Rens G., Khan P. M., Bloemendal H. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819–5823. doi: 10.1073/pnas.82.17.5819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RENWICK J. H., LAWLER S. D. PROBABLE LINKAGE BETWEEN A CONGENITAL CATARACT LOCUS AND THE DUFFY BLOOD GROUP LOCUS. Ann Hum Genet. 1963 Aug;27:67–84. doi: 10.1111/j.1469-1809.1963.tb00782.x. [DOI] [PubMed] [Google Scholar]
  14. Sherman J., Bass S. J., Noble K. G., Nath S., Sutija V. Visual evoked potential (VEP) delays in central serous choroidopathy. Invest Ophthalmol Vis Sci. 1986 Feb;27(2):214–221. [PubMed] [Google Scholar]
  15. Shiloh Y., Donlon T., Bruns G., Breitman M. L., Tsui L. C. Assignment of the human gamma-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33-36. Hum Genet. 1986 May;73(1):17–19. doi: 10.1007/BF00292656. [DOI] [PubMed] [Google Scholar]
  16. Siezen R. J., Fisch M. R., Slingsby C., Benedek G. B. Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1701–1705. doi: 10.1073/pnas.82.6.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Skow L. C. Location of a gene controlling electrophoretic variation in mouse gamma-crystallins. Exp Eye Res. 1982 Apr;34(4):509–516. doi: 10.1016/0014-4835(82)90023-9. [DOI] [PubMed] [Google Scholar]
  18. Slingsby C., Miller L. R. Purification and crystallization of mammalian lens gamma-crystallins. Exp Eye Res. 1983 Nov;37(5):517–530. doi: 10.1016/0014-4835(83)90028-3. [DOI] [PubMed] [Google Scholar]
  19. Weatherall D. J., Clegg J. B. Recent developments in the molecular genetics of human hemoglobin. Cell. 1979 Mar;16(3):467–479. doi: 10.1016/0092-8674(79)90022-9. [DOI] [PubMed] [Google Scholar]
  20. Willard H. F., Meakin S. O., Tsui L. C., Breitman M. L. Assignment of human gamma crystallin multigene family to chromosome 2. Somat Cell Mol Genet. 1985 Sep;11(5):511–516. doi: 10.1007/BF01534846. [DOI] [PubMed] [Google Scholar]
  21. Wistow G., Turnell B., Summers L., Slingsby C., Moss D., Miller L., Lindley P., Blundell T. X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 A resolution. J Mol Biol. 1983 Oct 15;170(1):175–202. doi: 10.1016/s0022-2836(83)80232-0. [DOI] [PubMed] [Google Scholar]
  22. den Dunnen J. T., Jongbloed R. J., Geurts van Kessel A. H., Schoenmakers J. G. Human lens gamma-crystallin sequences are located in the p12-qter region of chromosome 2. Hum Genet. 1985;70(3):217–221. doi: 10.1007/BF00273445. [DOI] [PubMed] [Google Scholar]
  23. den Dunnen J. T., Moormann R. J., Cremers F. P., Schoenmakers J. G. Two human gamma-crystallin genes are linked and riddled with Alu-repeats. Gene. 1985;38(1-3):197–204. doi: 10.1016/0378-1119(85)90218-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES