Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jan;84(2):508–511. doi: 10.1073/pnas.84.2.508

East African cheetahs: evidence for two population bottlenecks?

S J O'Brien, D E Wildt, M Bush, T M Caro, C FitzGibbon, I Aggundey, R E Leakey
PMCID: PMC304238  PMID: 3467370

Abstract

A combined population genetic and reproductive analysis was undertaken to compare free-ranging cheetahs from east Africa (Acinonyx jubatus raineyi) with the genetically impoverished and reproductively impaired south African subspecies (Acinonyx jubatus jubatus). Like that of their south African counterparts, the quality of semen specimens from east African cheetahs was poor, with a low concentration of spermatozoa (25.3 X 10(6) per ejaculate) and a high incidence of morphological abnormalities (79%). From an electrophoretic survey of the products of 49 genetic loci in A. jubatus raineyi, two allozyme polymorphisms were detected; one of these, for a nonspecific esterase, shows an allele that is rare (less than 1% incidence) in south African specimens. Estimates of polymorphism (2-4%) and average heterozygosity (0.0004-0.014) affirm the cheetah as the least genetically variable felid species. The genetic distance between south and east African cheetahs was low (0.004), suggesting that the development of genetic uniformity preceded the recent geographic isolation of the subspecies. We propose that at least two population bottlenecks followed by inbreeding produced the modern cheetah species. The first and most extreme was ancient, possibly late Pleistocene (circa 10,000 years ago); the second was more recent (within the last century) and led to the south African populations.

Full text

PDF
508

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. B. The cheetah: native american. Science. 1979 Sep 14;205(4411):1155–1158. doi: 10.1126/science.205.4411.1155. [DOI] [PubMed] [Google Scholar]
  2. McAlpine P. J., Shows T. B., Miller R. L., Pakstis A. J. The 1985 Catalog of Mapped Genes and report of the Nomenclature Committee. Cytogenet Cell Genet. 1985;40(1-4):8–66. doi: 10.1159/000132168. [DOI] [PubMed] [Google Scholar]
  3. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Nei M., Roychoudhury A. K. Genic variation within and between the three major races of man, Caucasoids, Negroids, and Mongoloids. Am J Hum Genet. 1974 Jul;26(4):421–443. [PMC free article] [PubMed] [Google Scholar]
  5. Nevo E. Genetic variation in natural populations: patterns and theory. Theor Popul Biol. 1978 Feb;13(1):121–177. doi: 10.1016/0040-5809(78)90039-4. [DOI] [PubMed] [Google Scholar]
  6. O'Brien S. J., Nash W. G., Wildt D. E., Bush M. E., Benveniste R. E. A molecular solution to the riddle of the giant panda's phylogeny. Nature. 1985 Sep 12;317(6033):140–144. doi: 10.1038/317140a0. [DOI] [PubMed] [Google Scholar]
  7. O'Brien S. J., Roelke M. E., Marker L., Newman A., Winkler C. A., Meltzer D., Colly L., Evermann J. F., Bush M., Wildt D. E. Genetic basis for species vulnerability in the cheetah. Science. 1985 Mar 22;227(4693):1428–1434. doi: 10.1126/science.2983425. [DOI] [PubMed] [Google Scholar]
  8. O'brien S. J., Wildt D. E., Goldman D., Merril C. R., Bush M. The cheetah is depauperate in genetic variation. Science. 1983 Jul 29;221(4609):459–462. doi: 10.1126/science.221.4609.459. [DOI] [PubMed] [Google Scholar]
  9. Rice M. C., O'Brien S. J. Genetic variance of laboratory outbred Swiss mice. Nature. 1980 Jan 10;283(5743):157–161. doi: 10.1038/283157a0. [DOI] [PubMed] [Google Scholar]
  10. Salisbury G. W., Hart R. G., Lodge J. R. The spermatozoan genome and fertility. Am J Obstet Gynecol. 1977 Jun 1;128(3):342–350. doi: 10.1016/0002-9378(77)90635-4. [DOI] [PubMed] [Google Scholar]
  11. Wildt D. E., Bush M., Howard J. G., O'Brien S. J., Meltzer D., Van Dyk A., Ebedes H., Brand D. J. Unique seminal quality in the South African cheetah and a comparative evaluation in the domestic cat. Biol Reprod. 1983 Nov;29(4):1019–1025. doi: 10.1095/biolreprod29.4.1019. [DOI] [PubMed] [Google Scholar]
  12. Wildt D. E., Howard J. G., Chakraborty P. K., Bush M. Reproductive physiology of the clouded leopard: II. A circannual analysis of adrenal-pituitary-testicular relationships during electroejaculation or after an adrenocorticotropin hormone challenge. Biol Reprod. 1986 Jun;34(5):949–959. doi: 10.1095/biolreprod34.5.949. [DOI] [PubMed] [Google Scholar]
  13. Wildt D. E., Howard J. G., Hall L. L., Bush M. Reproductive physiology of the clouded leopard: I. Electroejaculates contain high proportions of pleiomorphic spermatozoa throughout the year. Biol Reprod. 1986 Jun;34(5):937–947. doi: 10.1095/biolreprod34.5.937. [DOI] [PubMed] [Google Scholar]
  14. Wildt D. E., Meltzer D., Chakraborty P. K., Bush M. Adrenal-testicular-pituitary relationships in the cheetah subjected to anesthesia/electroejaculation. Biol Reprod. 1984 Apr;30(3):665–672. doi: 10.1095/biolreprod30.3.665. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES