Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jan;84(2):517–521. doi: 10.1073/pnas.84.2.517

his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling.

K E Rudd, R Menzel
PMCID: PMC304240  PMID: 3025879

Abstract

The hisW mutations of Salmonella typhimurium are highly pleiotropic mutations that elevate his operon expression, reduce ilv gene expression, alter stable RNA metabolism, and confer defective growth properties. The hisW mutations are highly linked to a naladixic acid-resistant gyrA mutation of S. typhimurium. Multicopy recombinant plasmids containing the Escherichia coli gyrA gene are able to complement both the growth defects and the elevated his operon expression associated with the hisW mutations. We conclude that hisW mutations are alleles of the gyrA gene. The hisU1820 mutant of S. typhimurium exhibits many of the same phenotypes as hisW mutants. Several lines of evidence, including high transduction linkage to recF, suggest that hisU1820 is an allele of gyrB. Finally, well-characterized gyrA and gyrB alleles of E. coli are also his regulatory mutations. We propose that a wild-type degree of chromosomal superhelicity is required for maximal production of histidyl-tRNA and normal his operon regulation.

Full text

PDF
517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antón D. N. Histidine regulatory mutants in Salmonella typhimurium. V. Two new classes histidine regulatory mutants. J Mol Biol. 1968 May 14;33(3):533–546. doi: 10.1016/0022-2836(68)90304-5. [DOI] [PubMed] [Google Scholar]
  2. Atlung T., Clausen E. S., Hansen F. G. Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet. 1985;200(3):442–450. doi: 10.1007/BF00425729. [DOI] [PubMed] [Google Scholar]
  3. Bagdasarian M., Zdzienicka M., Bagdasarian M. Temperature sensitive initiation of DNA synthesis in a mutant of Salmonella typhimurium. Mol Gen Genet. 1972;117(2):129–142. doi: 10.1007/BF00267610. [DOI] [PubMed] [Google Scholar]
  4. Blanar M. A., Sandler S. J., Armengod M. E., Ream L. W., Clark A. J. Molecular analysis of the recF gene of Escherichia coli. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4622–4626. doi: 10.1073/pnas.81.15.4622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bossi L., Ciampi M. S., Cortese R. Characterization of a Salmonella typhimurium hisU mutant defective in tRNA precursor processing. J Bacteriol. 1978 May;134(2):612–620. doi: 10.1128/jb.134.2.612-620.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bossi L., Cortese R. Biosynthesis of tRNA in histidine regulatory mutants of Salmonella typhimurium. Nucleic Acids Res. 1977 Jun;4(6):1945–1956. doi: 10.1093/nar/4.6.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenchley J. E., Ingraham J. L. Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium. J Bacteriol. 1973 May;114(2):528–536. doi: 10.1128/jb.114.2.528-536.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brenner M., Ames B. N. Histidine regulation in Salmonella typhimurium. IX. Histidine transfer ribonucleic acid of the regulatory mutants. J Biol Chem. 1972 Feb 25;247(4):1080–1088. [PubMed] [Google Scholar]
  9. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cieslà Z., Salvatore F., Broach J. R., Artz S. W., Ames B. N. Histidine regulation in Salmonella typhimurium. XVI. A sensitive radiochemical assay for histidinol dehydrogenase. Anal Biochem. 1975 Jan;63(1):44–55. doi: 10.1016/0003-2697(75)90187-6. [DOI] [PubMed] [Google Scholar]
  11. Davidson J. P., Williams L. S. Regulation of isoleucine and valine biosynthesis in Salmonella typhimurium: the effect of hisU on repression control. J Mol Biol. 1979 Jan 15;127(2):229–235. doi: 10.1016/0022-2836(79)90244-4. [DOI] [PubMed] [Google Scholar]
  12. Davidson J. P., Wilson D. J., Williams L. S. Role of a hisU gene in the control of stable RNA synthesis in Salmonella typhimurium. J Mol Biol. 1982 May 15;157(2):237–264. doi: 10.1016/0022-2836(82)90232-7. [DOI] [PubMed] [Google Scholar]
  13. Davis L., Williams L. S. Altered regulation of isoleucine-valine biosynthesis in a hisW mutant of Salmonella typhimurium. J Bacteriol. 1982 Aug;151(2):860–866. doi: 10.1128/jb.151.2.860-866.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davis L., Williams L. S. Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium. J Bacteriol. 1982 Aug;151(2):867–878. doi: 10.1128/jb.151.2.867-878.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Drlica K., Snyder M. Superhelical Escherichia coli DNA: relaxation by coumermycin. J Mol Biol. 1978 Apr 5;120(2):145–154. doi: 10.1016/0022-2836(78)90061-x. [DOI] [PubMed] [Google Scholar]
  16. Friedman D. I., Olson E. J., Carver D., Gellert M. Synergistic effect of himA and gyrB mutations: evidence that him functions control expression of ilv and xyl genes. J Bacteriol. 1984 Feb;157(2):484–489. doi: 10.1128/jb.157.2.484-489.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gellert M. DNA topoisomerases. Annu Rev Biochem. 1981;50:879–910. doi: 10.1146/annurev.bi.50.070181.004311. [DOI] [PubMed] [Google Scholar]
  18. Gellert M., Menzel R., Mizuuchi K., O'Dea M. H., Friedman D. I. Regulation of DNA supercoiling in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):763–767. doi: 10.1101/sqb.1983.047.01.087. [DOI] [PubMed] [Google Scholar]
  19. Glaser G., Sarmientos P., Cashel M. Functional interrelationship between two tandem E. coli ribosomal RNA promoters. Nature. 1983 Mar 3;302(5903):74–76. doi: 10.1038/302074a0. [DOI] [PubMed] [Google Scholar]
  20. Hansen E. B., Atlung T., Hansen F. G., Skovgaard O., von Meyenburg K. Fine structure genetic map and complementation analysis of mutations in the dnaA gene of Escherichia coli. Mol Gen Genet. 1984;196(3):387–396. doi: 10.1007/BF00436184. [DOI] [PubMed] [Google Scholar]
  21. Johnston H. M., Barnes W. M., Chumley F. G., Bossi L., Roth J. R. Model for regulation of the histidine operon of Salmonella. Proc Natl Acad Sci U S A. 1980 Jan;77(1):508–512. doi: 10.1073/pnas.77.1.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreuzer K. N., Cozzarelli N. R. Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth. J Bacteriol. 1979 Nov;140(2):424–435. doi: 10.1128/jb.140.2.424-435.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lamond A. I. Supercoiling response of a bacterial tRNA gene. EMBO J. 1985 Feb;4(2):501–507. doi: 10.1002/j.1460-2075.1985.tb03656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lewis J. A., Ames B. N. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA His charged in vivo and its relation to the repression of the histidine operon. J Mol Biol. 1972 Apr 28;66(1):131–142. doi: 10.1016/s0022-2836(72)80011-1. [DOI] [PubMed] [Google Scholar]
  25. Maloy S. R., Roth J. R. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap, lac) operon fusions. J Bacteriol. 1983 May;154(2):561–568. doi: 10.1128/jb.154.2.561-568.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mizuuchi K., Mizuuchi M., O'Dea M. H., Gellert M. Cloning and simplified purification of Escherichia coli DNA gyrase A and B proteins. J Biol Chem. 1984 Jul 25;259(14):9199–9201. [PubMed] [Google Scholar]
  27. Roth J. R., Antón D. N., Hartman P. E. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J Mol Biol. 1966 Dec 28;22(2):305–323. doi: 10.1016/0022-2836(66)90134-3. [DOI] [PubMed] [Google Scholar]
  28. Rudd K. E., Bochner B. R., Cashel M., Roth J. R. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol. 1985 Aug;163(2):534–542. doi: 10.1128/jb.163.2.534-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vosberg H. P. DNA topoisomerases: enzymes that control DNA conformation. Curr Top Microbiol Immunol. 1985;114:19–102. doi: 10.1007/978-3-642-70227-3_2. [DOI] [PubMed] [Google Scholar]
  30. Wahle E., Mueller K., Orr E. Effect of DNA gyrase inactivation on RNA synthesis in Escherichia coli. J Bacteriol. 1985 Apr;162(1):458–460. doi: 10.1128/jb.162.1.458-460.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto N., Droffner M. L. Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2077–2081. doi: 10.1073/pnas.82.7.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES