Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jan;84(2):580–584. doi: 10.1073/pnas.84.2.580

Copper amplification of prostaglandin E2 stimulation of the release of luteinizing hormone-releasing hormone is a postreceptor event.

A Barnea, G Cho
PMCID: PMC304254  PMID: 2432612

Abstract

We have shown that copper amplifies prostaglandin E2 (PGE2) stimulation of luteinizing hormone-releasing hormone (LH-RH) from explants of the median eminence area (MEA) and that this process is calcium-dependent. Since a Ca-cAMP pathway has been implicated in PGE2 action on the LH-RH neuron, in this study we wished to ascertain if copper exerts its effect on the PGE2 receptor or on a postreceptor component involved in PGE2 action. MEA of adult male rats were incubated for 5 min with 200 microM Cu/histidine (CuCl2 mixed with L-histidine at an equimolar ratio) and then incubated for 15 min either with 10 microM PGE2 (Cu/PGE2), 100 microM forskolin (Cu/forskolin), or 1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (Cu/cAMP). Controls were incubated without Cu/histidine or with Cu/histidine alone. Basal release of LH-RH was 4.6 +/- 0.45 pg/15 min per MEA (mean +/- SEM). Net stimulated release during the 15-min exposure to PGE2, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate was 3.6 +/- 0.52, 3.1 +/- 0.39, and 1.6 +/- 0.42 pg/15 min per MEA, respectively. Net stimulated release after exposure to Cu/PGE2, Cu/forskolin, or Cu/cAMP was 12.7 +/- 2.2, 9.9 +/- 1.46, and 1.4 +/- 1.9 pg/15 min per MEA, respectively, indicating that copper amplifies the action of PGE2 and forskolin but not cAMP action. When MEA were exposed to a mixture of PGE2 and forskolin for 15 min, the effects of these two secretagogues on LH-RH release were not additive, regardless of whether the MEA were pretreated with Cu/histidine. In contrast to PGE2 and forskolin, copper did not amplify K+ stimulation of LH-RH release and, moreover, when Cu/histidine-treated MEA were exposed to a mixture of PGE2 and 30 mM K+, the effects of these two secretagogues were additive. These results are supportive of the proposition that PGE2 stimulation of LH-RH release is mediated by the Ca-cAMP pathway and that copper amplification of PGE2 action is a postreceptor event.

Full text

PDF
580

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba A., Lee E., Ohta A., Tatsuno T., Iwata H. Activation of adenylate cyclase of rat brain by lipid peroxidation. J Biol Chem. 1981 Apr 25;256(8):3679–3684. [PubMed] [Google Scholar]
  2. Barnea A., Cho G., Colombani-Vidal M. A role for extracellular copper in modulating prostaglandin E2 (PGE2) action: facilitation of PGE2 stimulation of the release of gonadotropin-releasing hormone (LHRH) from median eminence explants. Endocrinology. 1985 Jul;117(1):415–417. doi: 10.1210/endo-117-1-415. [DOI] [PubMed] [Google Scholar]
  3. Barnea A., Cho G., Colombani-Vidal M. Amplification of prostaglandin E2 stimulation of luteinizing hormone-releasing hormone release from median eminence explants: a metal(II)-specific effect of chelated copper. Brain Res. 1986 Oct 1;384(1):101–105. doi: 10.1016/0006-8993(86)91224-2. [DOI] [PubMed] [Google Scholar]
  4. Barnea A., Cho G., Colombani-Vidal M. Evidence that a short-lived effect of copper leads to amplification of prostaglandin E2 stimulation of the release of gonadotropin-releasing hormone from median eminence explants. Endocrinology. 1986 Sep;119(3):1254–1261. doi: 10.1210/endo-119-3-1254. [DOI] [PubMed] [Google Scholar]
  5. Barnea A., Cho G., Colombani-Vidal M. Extracellular calcium is required for copper-amplified prostaglandin E2 stimulation of the release of gonadotropin-releasing hormone from median eminence explants. Endocrinology. 1986 Sep;119(3):1262–1267. doi: 10.1210/endo-119-3-1262. [DOI] [PubMed] [Google Scholar]
  6. Barnea A., Cho G. Evidence that copper-amino acid complexes are potent stimulators of the release of luteinizing hormone-releasing hormone from isolated hypothalamic granules. Endocrinology. 1984 Sep;115(3):936–943. doi: 10.1210/endo-115-3-936. [DOI] [PubMed] [Google Scholar]
  7. Barnea A., Colombani-Vidal M. A ligand-specific action of chelated copper on hypothalamic neurons: stimulation of the release of luteinizing hormone-releasing hormone from median eminence explants. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7656–7660. doi: 10.1073/pnas.81.23.7656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barnea A., Oliver C., Porter J. C. Subcellular localization of alpha-melanocyte-stimulating hormone in the rat hypothalamus. J Neurochem. 1977 Oct;29(4):619–624. doi: 10.1111/j.1471-4159.1977.tb07777.x. [DOI] [PubMed] [Google Scholar]
  9. Bigdeli H., Snyder P. J. Gonadotropin releasing hormone release from the rat hypothalamus: dependence on membrane depolarization and calcium influx. Endocrinology. 1978 Jul;103(1):281–286. doi: 10.1210/endo-103-1-281. [DOI] [PubMed] [Google Scholar]
  10. Brostrom M. A., Brostrom C. O., Brotman L. A., Green S. S. Regulation of Ca2+-dependent cyclic AMP accumulation and Ca2+ metabolism in intact pituitary tumor cells by modulators of prolactin production. Mol Pharmacol. 1983 Mar;23(2):399–408. [PubMed] [Google Scholar]
  11. Brunton L. L., Wiklund R. A., Van Arsdale P. M., Gilman A. G. Binding of (3H)prostaglandin E1 to putative receptors linked to adenylate cyclase of cultured cell clones. J Biol Chem. 1976 May 25;251(10):3037–3044. [PubMed] [Google Scholar]
  12. Colombani-Vidal M., Barnea A. Copper stimulation of LHRH release from median eminence explants. I. A divalent metal specific process that does not require extracellular calcium. Neuroendocrinology. 1986;43(6):664–669. doi: 10.1159/000124601. [DOI] [PubMed] [Google Scholar]
  13. Delbeke D., Scammell J. G., Dannies P. S. Difference in calcium requirements for forskolin-induced release of prolactin from normal pituitary cells and GH4C1 cells in culture. Endocrinology. 1984 Apr;114(4):1433–1440. doi: 10.1210/endo-114-4-1433. [DOI] [PubMed] [Google Scholar]
  14. Drouva S. V., Epelbaum J., Laplante E., Kordon C. Calmodulin involvement on the Ca++-dependent release of LHRH and SRIF in vitro. Neuroendocrinology. 1984 Mar;38(3):189–192. doi: 10.1159/000123889. [DOI] [PubMed] [Google Scholar]
  15. Friedlander G., Chansel D., Sraer J., Bens M., Ardaillou R. PGE2 binding sites and PG-stimulated cyclic AMP accumulation in rat isolated glomeruli and glomerular cultured cells. Mol Cell Endocrinol. 1983 May;30(2):201–214. doi: 10.1016/0303-7207(83)90048-5. [DOI] [PubMed] [Google Scholar]
  16. Hartter D. E., Ramirez V. D. Responsiveness of immature versus adult male rat hypothalami to dibutyryl cyclic AMP- and forskolin-induced LHRH release in vitro. Neuroendocrinology. 1985 Jun;40(6):476–482. doi: 10.1159/000124118. [DOI] [PubMed] [Google Scholar]
  17. Heasley L. E., Azari J., Brunton L. L. A glutathione adduct of prostaglandin A1 acts intracellularly to elevate cyclic AMP by inhibiting its extrusion. J Cyclic Nucleotide Protein Phosphor Res. 1985;10(1):3–8. [PubMed] [Google Scholar]
  18. Heasley L. E., Brunton L. L. Prostaglandin A1 metabolism and inhibition of cyclic AMP extrusion by avian erythrocytes. J Biol Chem. 1985 Sep 25;260(21):11514–11519. [PubMed] [Google Scholar]
  19. Heasley L. E., Watson M. J., Brunton L. L. Putative inhibitor of cyclic AMP efflux: chromatography, amino acid composition, and identification as a prostaglandin A1-glutathione adduct. J Biol Chem. 1985 Sep 25;260(21):11520–11523. [PubMed] [Google Scholar]
  20. Heaulme M., Dray F. Noradrenaline and prostaglandin E2 stimulate LH-RH release from rat median eminence through distinct 1-alpha-adrenergic and PGE2 receptors. Neuroendocrinology. 1984 Nov;39(5):403–407. doi: 10.1159/000124012. [DOI] [PubMed] [Google Scholar]
  21. Ho R. J., Shi Q. H. Evidence for a single forskolin-binding site in rat adipocyte membrane. Studies of [14,15-3H]dihydroforskolin binding and adenylate cyclase activation. J Biol Chem. 1984 Jun 25;259(12):7630–7636. [PubMed] [Google Scholar]
  22. Kim K., Ramirez V. D. Dibutyryl cyclic adenosine monophosphate stimulates in vitro luteinizing hormone-releasing hormone release only from median eminence derived from ovariectomized, estradiol-primed rats. Brain Res. 1985 Sep 2;342(1):154–157. doi: 10.1016/0006-8993(85)91365-4. [DOI] [PubMed] [Google Scholar]
  23. Lee E., Baba A., Ohta A., Iwata H. Solubilization of adenylate cyclase of brain membranes by lipid peroxidation. Biochim Biophys Acta. 1982 Jul 28;689(2):370–374. doi: 10.1016/0005-2736(82)90271-1. [DOI] [PubMed] [Google Scholar]
  24. Luini A., Lewis D., Guild S., Corda D., Axelrod J. Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8034–8038. doi: 10.1073/pnas.82.23.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malnoë A., Cox J. A. Relationship among calmodulin-, forskolin-, and guanine nucleotide-dependent adenylate cyclase activities in cerebellar membranes: studies by limited proteolysis. J Neurochem. 1985 Oct;45(4):1163–1171. doi: 10.1111/j.1471-4159.1985.tb05537.x. [DOI] [PubMed] [Google Scholar]
  26. Morris S. A., Bilezikian J. P. Evidence that forskolin activates turkey erythrocyte adenylate cyclase through a noncatalytic site. Arch Biochem Biophys. 1983 Feb 1;220(2):628–636. doi: 10.1016/0003-9861(83)90456-3. [DOI] [PubMed] [Google Scholar]
  27. Nett T. M., Akbar A. M., Niswender G. D., Hedlund M. T., White W. F. A radioimmunoassay for gonadotropin-releasing hormone (Gn-RH) in serum. J Clin Endocrinol Metab. 1973 May;36(5):880–885. doi: 10.1210/jcem-36-5-880. [DOI] [PubMed] [Google Scholar]
  28. Ojeda S. R., Negro-Vilar A., McCann S. M. Release of prostaglandin Es by hypothalamic tissue: evidence for their involvement in catecholamine-induced luteinizing hormone-releasing hormone release. Endocrinology. 1979 Mar;104(3):617–624. doi: 10.1210/endo-104-3-617. [DOI] [PubMed] [Google Scholar]
  29. Ojeda S. R., Negro-Vilar A. Prostaglandin E2-induced luteinizing hormone-releasing hormone release involves mobilization of intracellular Ca+2. Endocrinology. 1985 May;116(5):1763–1770. doi: 10.1210/endo-116-5-1763. [DOI] [PubMed] [Google Scholar]
  30. Ojeda S. R., Negro-Vilar A. Release of prostaglandin E2 from the hypothalamus depends on extracellular Ca2+ availability: relation to LHRH release. Neuroendocrinology. 1984 Nov;39(5):442–447. doi: 10.1159/000124018. [DOI] [PubMed] [Google Scholar]
  31. Ojeda S. R., Urbanski H. F., Katz K. H., Costa M. E. Stimulation of cyclic adenosine 3',5'-monophosphate production enhances hypothalamic luteinizing hormone-releasing hormone release without increasing prostaglandin E2 synthesis: studies in prepubertal female rats. Endocrinology. 1985 Sep;117(3):1175–1178. doi: 10.1210/endo-117-3-1175. [DOI] [PubMed] [Google Scholar]
  32. Ramirez V. D., Gallardo E., Hartter D. Factors altering the secretion of LHRH from superfused fragments of rat hypothalamus. J Endocrinol Invest. 1980 Jan-Mar;3(1):29–37. doi: 10.1007/BF03348214. [DOI] [PubMed] [Google Scholar]
  33. Reisine T., Heisler S., Hook V. Y., Axelrod J. Multireceptor-induced release of adrenocorticotropin from anterior pituitary tumor cells. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1251–1257. doi: 10.1016/0006-291x(82)92134-9. [DOI] [PubMed] [Google Scholar]
  34. Rice G. E., Cho G., Barnea A. Aging-related reduced release of LH-releasing hormone from hypothalamic granules. Neurobiol Aging. 1983 Fall;4(3):217–222. doi: 10.1016/0197-4580(83)90023-4. [DOI] [PubMed] [Google Scholar]
  35. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  36. Schubart U. K., Erlichman J., Fleischer N. The role of calmodulin in the regulation of protein phosphorylation and insulin release in hamster insulinoma cells. J Biol Chem. 1980 May 10;255(9):4120–4124. [PubMed] [Google Scholar]
  37. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stengel D., Guenet L., Desmier M., Insel P., Hanoune J. Forskolin requires more than the catalytic unit to activate adenylate cyclase. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):681–690. doi: 10.1016/0303-7207(82)90155-1. [DOI] [PubMed] [Google Scholar]
  39. Strasser R. H., Lefkowitz R. J. Homologous desensitization of beta-adrenergic receptor coupled adenylate cyclase. Resensitization by polyethylene glycol treatment. J Biol Chem. 1985 Apr 25;260(8):4561–4564. [PubMed] [Google Scholar]
  40. Study R. E., Breakefield X. O., Bartfai T., Greengard P. Voltage-sensitive calcium channels regulate guanosine 3',5'-cyclic monophosphate levels in neuroblastoma cells. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6295–6299. doi: 10.1073/pnas.75.12.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tamir A., Tolkovsky A. M. Transient states of adenylate cyclase in brain membranes. J Neurochem. 1985 Apr;44(4):1006–1013. doi: 10.1111/j.1471-4159.1985.tb08719.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES