Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Feb;84(3):719–723. doi: 10.1073/pnas.84.3.719

Amino acid sequence of S-adenosyl-L-homocysteine hydrolase from rat liver as derived from the cDNA sequence.

H Ogawa, T Gomi, M M Mueckler, M Fujioka, P S Backlund Jr, R R Aksamit, C G Unson, G L Cantoni
PMCID: PMC304287  PMID: 3027698

Abstract

Rat liver cDNA libraries constructed in lambda gt11 were screened for reactivity with polyclonal antibodies to native S-adenosyl-L-homocysteine (AdoHcy) hydrolase (adenosylhomocysteinase; EC 3.3.1.1). Five clones were isolated and sequenced. The amino acid sequence, deduced from the cDNA sequence, contained the sequence of eight peptides obtained by tryptic and cyanogen bromide fragmentation of rat liver AdoHcy hydrolase. Identification of the amino- and carboxyl-terminal peptides in the amino acid sequence showed that the complete sequence was obtained. A "fingerprint" sequence was found that is characteristic of dinucleotide-binding domains of many proteins. For AdoHcy hydrolase, this region from the lysine at position 213 to the aspartate at position 244, containing the sequence Gly-Xaa-Gly-Xaa-Xaa-Gly at positions 219-224, is presumably the site of binding for NAD+, which is required for the activity of the enzyme.

Full text

PDF
719

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles R. H., Fish S., Lapinskas B. S-Adenosylhomocysteinase: mechanism of inactivation by 2'-deoxyadenosine and interaction with other nucleosides. Biochemistry. 1982 Oct 26;21(22):5557–5562. doi: 10.1021/bi00265a027. [DOI] [PubMed] [Google Scholar]
  2. Brownlee A. G., Phillips D. R., Polya G. M. Purification and characterization of two high-affinity (adenosine 3',5'-monophosphate)-binding proteins from yeast. Identification as multiple forms of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1980 Aug;109(1):39–49. doi: 10.1111/j.1432-1033.1980.tb04765.x. [DOI] [PubMed] [Google Scholar]
  3. Brownlee A. G., Polya G. M. The ligand specificity of the (adenosine 3',5'-monophosphate)-binding site of yeast glyceraldehyde-3-phosphate dehydrogenase. Interaction with adenosine derivatives and pharmacologically-active compounds. Eur J Biochem. 1980 Aug;109(1):51–59. doi: 10.1111/j.1432-1033.1980.tb04766.x. [DOI] [PubMed] [Google Scholar]
  4. DE LA HABA G., CANTONI G. L. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem. 1959 Mar;234(3):603–608. [PubMed] [Google Scholar]
  5. Daddona P. E., Shewach D. S., Kelley W. N., Argos P., Markham A. F., Orkin S. H. Human adenosine deaminase. cDNA and complete primary amino acid sequence. J Biol Chem. 1984 Oct 10;259(19):12101–12106. [PubMed] [Google Scholar]
  6. Døskeland S. O., Ueland P. M. Comparison of some physicochemical and kinetic properties of S-adenosylhomocysteine hydrolase from bovine liver, bovine adrenal cortex and mouse liver. Biochim Biophys Acta. 1982 Nov 9;708(2):185–193. doi: 10.1016/0167-4838(82)90219-9. [DOI] [PubMed] [Google Scholar]
  7. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujioka M., Takata Y. S-Adenosylhomocysteine hydrolase from rat liver. Purification and some properties. J Biol Chem. 1981 Feb 25;256(4):1631–1635. [PubMed] [Google Scholar]
  9. Gay N. J., Walker J. E. Homology between human bladder carcinoma oncogene product and mitochondrial ATP-synthase. Nature. 1983 Jan 20;301(5897):262–264. doi: 10.1038/301262a0. [DOI] [PubMed] [Google Scholar]
  10. Gomi T., Ishiguro Y., Fujioka M. S-Adenosylhomocysteinase from rat liver. Evidence for structurally identical and catalytically equivalent subunits. J Biol Chem. 1985 Mar 10;260(5):2789–2793. [PubMed] [Google Scholar]
  11. Gomi T., Ogawa H., Fujioka M. S-adenosylhomocysteinase from rat liver. Amino acid sequences of the peptides containing active site cysteine residues modified by treatment with 5'-p-fluorosulfonylbenzoyladenosine. J Biol Chem. 1986 Oct 15;261(29):13422–13425. [PubMed] [Google Scholar]
  12. Gounaris A. D., Perlmann G. E. Succinylation of pepsinogen. J Biol Chem. 1967 Jun 10;242(11):2739–2745. [PubMed] [Google Scholar]
  13. Hannink M., Donoghue D. J. Lysine residue 121 in the proposed ATP-binding site of the v-mos protein is required for transformation. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7894–7898. doi: 10.1073/pnas.82.23.7894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  15. Hershfield M. S., Francke U. The human genes for S-adenosylhomocysteine hydrolase and adenosine deaminase are syntenic on chromosome 20. Science. 1982 May 14;216(4547):739–742. doi: 10.1126/science.7079734. [DOI] [PubMed] [Google Scholar]
  16. Hershfield M. S., Krodich N. M. S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science. 1978 Nov 17;202(4369):757–760. doi: 10.1126/science.715439. [DOI] [PubMed] [Google Scholar]
  17. Hohman R. J., Guitton M. C., Veron M. Inactivation of S-adenosyl-L-homocysteine hydrolase by cAMP results from dissociation of enzyme-bound NAD+. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4578–4581. doi: 10.1073/pnas.82.14.4578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jung A., Sippel A. E., Grez M., Schütz G. Exons encode functional and structural units of chicken lysozyme. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5759–5763. doi: 10.1073/pnas.77.10.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jörnvall H. Horse liver alcohol dehydrogenase. The primary structure of the protein chain of the ethanol-active isoenzyme. Eur J Biochem. 1970 Sep;16(1):25–40. doi: 10.1111/j.1432-1033.1970.tb01049.x. [DOI] [PubMed] [Google Scholar]
  20. Kajander E. O., Raina A. M. Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver. Biochem J. 1981 Feb 1;193(2):503–512. doi: 10.1042/bj1930503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kamps M. P., Taylor S. S., Sefton B. M. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature. 1984 Aug 16;310(5978):589–592. doi: 10.1038/310589a0. [DOI] [PubMed] [Google Scholar]
  22. Kishi F., Maruyama M., Tanizawa Y., Nakazawa A. Isolation and characterization of cDNA for chicken muscle adenylate kinase. J Biol Chem. 1986 Feb 25;261(6):2942–2945. [PubMed] [Google Scholar]
  23. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krauth-Siegel R. L., Blatterspiel R., Saleh M., Schiltz E., Schirmer R. H., Untucht-Grau R. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur J Biochem. 1982 Jan;121(2):259–267. doi: 10.1111/j.1432-1033.1982.tb05780.x. [DOI] [PubMed] [Google Scholar]
  25. Lin F. K., Suggs S., Lin C. H., Browne J. K., Smalling R., Egrie J. C., Chen K. K., Fox G. M., Martin F., Stabinsky Z. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7580–7584. doi: 10.1073/pnas.82.22.7580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  27. Mueckler M. M., Pitot H. C. Sequence of the precursor to rat ornithine aminotransferase deduced from a cDNA clone. J Biol Chem. 1985 Oct 25;260(24):12993–12997. [PubMed] [Google Scholar]
  28. Nevins J. R. The pathway of eukaryotic mRNA formation. Annu Rev Biochem. 1983;52:441–466. doi: 10.1146/annurev.bi.52.070183.002301. [DOI] [PubMed] [Google Scholar]
  29. Palmer J. L., Abeles R. H. Mechanism for enzymatic thioether formation. Mechanism of action of S-adenosylhomocysteinase. J Biol Chem. 1976 Sep 25;251(18):5817–5819. [PubMed] [Google Scholar]
  30. Palmer J. L., Abeles R. H. The mechanism of action of S-adenosylhomocysteinase. J Biol Chem. 1979 Feb 25;254(4):1217–1226. [PubMed] [Google Scholar]
  31. Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., Ullrich A. The complete primary structure of protein kinase C--the major phorbol ester receptor. Science. 1986 Aug 22;233(4766):853–859. doi: 10.1126/science.3755547. [DOI] [PubMed] [Google Scholar]
  32. Richards H. H., Chiang P. K., Cantoni G. L. Adenosylhomocysteine hydrolase. Crystallization of the purified enzyme and its properties. J Biol Chem. 1978 Jun 25;253(12):4476–4480. [PubMed] [Google Scholar]
  33. Sacerdot C., Dessen P., Hershey J. W., Plumbridge J. A., Grunberg-Manago M. Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7787–7791. doi: 10.1073/pnas.81.24.7787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saebø J., Ueland P. M. An adenosine 3':5'-monophosphate adenosine-binding protein from mouse liver. Association with S-adenosylhomocysteinase activity. FEBS Lett. 1978 Dec 1;96(1):125–128. doi: 10.1016/0014-5793(78)81076-x. [DOI] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scolnick E. M., Papageorge A. G., Shih T. Y. Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5355–5359. doi: 10.1073/pnas.76.10.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shimizu S., Shiozaki S., Ohshiro T., Yamada H. Occurrence of S-adenosylhomocysteine hydrolase in prokaryote cells. Characterization of the enzyme from Alcaligenes faecalis and role of the enzyme in the activated methyl cycle. Eur J Biochem. 1984 Jun 1;141(2):385–392. doi: 10.1111/j.1432-1033.1984.tb08203.x. [DOI] [PubMed] [Google Scholar]
  38. Taylor S. S. Amino acid sequence of dogfish muscle lactate dehydrogenase. J Biol Chem. 1977 Mar 10;252(5):1799–1806. [PubMed] [Google Scholar]
  39. Tosi M., Young R. A., Hagenbüchle O., Schibler U. Multiple polyadenylation sites in a mouse alpha-amylase gene. Nucleic Acids Res. 1981 May 25;9(10):2313–2323. doi: 10.1093/nar/9.10.2313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
  41. Velick S. F., Baggott J. P., Sturtevant J. M. Thermodynamics of nicotinamide-adenine dinucleotide addition to the glyceraldehyde 3-phosphate dehydrogenases of yeast and of rabbit skeletal muscle. An equilibrium and calorimetric analysis over a range of temperatures. Biochemistry. 1971 Mar 2;10(5):779–786. doi: 10.1021/bi00781a009. [DOI] [PubMed] [Google Scholar]
  42. Wierenga R. K., Hol W. G. Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature. 1983 Apr 28;302(5911):842–844. doi: 10.1038/302842a0. [DOI] [PubMed] [Google Scholar]
  43. Yatsunami K., Khorana H. G. GTPase of bovine rod outer segments: the amino acid sequence of the alpha subunit as derived from the cDNA sequence. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4316–4320. doi: 10.1073/pnas.82.13.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yeung C. Y., Ingolia D. E., Roth D. B., Shoemaker C., Al-Ubaidi M. R., Yen J. Y., Ching C., Bobonis C., Kaufman R. J., Kellems R. E. Identification of functional murine adenosine deaminase cDNA clones by complementation in Escherichia coli. J Biol Chem. 1985 Aug 25;260(18):10299–10307. [PubMed] [Google Scholar]
  45. Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]
  46. de Wet J. R., Fukushima H., Dewji N. N., Wilcox E., O'Brien J. S., Helinski D. R. Chromogenic immunodetection of human serum albumin and alpha-L-fucosidase clones in a human hepatoma cDNA expression library. DNA. 1984 Dec;3(6):437–447. doi: 10.1089/dna.1.1984.3.437. [DOI] [PubMed] [Google Scholar]
  47. de la Haba G., Agostini S., Bozzi A., Merta A., Unson C., Cantoni G. L. S-adenosylhomocysteinase: mechanism of reversible and irreversible inactivation by ATP, cAMP, and 2'-deoxyadenosine. Biochemistry. 1986 Dec 16;25(25):8337–8342. doi: 10.1021/bi00373a031. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES