Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Feb;84(3):724–728. doi: 10.1073/pnas.84.3.724

Incorporation of a retinal rod cGMP-dependent conductance into planar bilayers.

J C Tanaka, R E Furman, W H Cobbs, P Mueller
PMCID: PMC304288  PMID: 3027699

Abstract

The light-modulated current of vertebrate retinal rods flows through a 3',5'-cyclic GMP-dependent conductance located in the outer segment plasma membrane. We report the incorporation into planar bilayers of a conductance derived from vertebrate rod outer segment membranes specifically activated by cGMP but not by cAMP, 5'-GMP, GTP, or 5'-AMP. When the mean currents were measured as a function of increasing cGMP concentration, maximal activation occurred at concentrations less than 50 microM. Washout of cGMP rapidly reversed the effect. The apparent half-saturating concentrations were between 12 and 27 microM. Sodium, lithium, cesium, and potassium supported current in the presence of low concentrations of Ca2+, Mg2+, and 100 microM cGMP; choline did not. Removal of the divalent cations reversibly increased the currents. When calcium was the only current-carrying cation, attenuated currents were seen. These experiments support the hypothesis that calcium is a permeant blocker of the conductance. At low concentrations of cGMP in solutions also containing 0.5 mM EDTA, brief current spikes occurred with amplitudes from 0.5 to 4 pA at 50 mV. These spikes differed from the well-defined, unitary conductance steps usually associated with the opening and closing of ion channels. Occasionally we saw longer-lasting channel-like events; however, amplitude histograms did not resolve discrete conductance levels.

Full text

PDF
724

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baehr W., Devlin M. J., Applebury M. L. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem. 1979 Nov 25;254(22):11669–11677. [PubMed] [Google Scholar]
  2. Bodoia R. D., Detwiler P. B. Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog. J Physiol. 1985 Oct;367:183–216. doi: 10.1113/jphysiol.1985.sp015820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caretta A., Cavaggioni A., Sorbi R. T. Cyclic GMP and the permeability of the disks of the frog photoreceptors. J Physiol. 1979 Oct;295:171–178. doi: 10.1113/jphysiol.1979.sp012959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caretta A. Effect of cGMP and cations on the permeability of cattle retinal disks. Eur J Biochem. 1985 May 2;148(3):599–606. doi: 10.1111/j.1432-1033.1985.tb08882.x. [DOI] [PubMed] [Google Scholar]
  5. Cavaggioni A., Sorbi R. T. Cyclic GMP releases calcium from disc membranes of vertebrate photoreceptors. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3964–3968. doi: 10.1073/pnas.78.6.3964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cobbs W. H., Pugh E. N., Jr Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Nature. 1985 Feb 14;313(6003):585–587. doi: 10.1038/313585a0. [DOI] [PubMed] [Google Scholar]
  7. Detwiler P. B., Conner J. D., Bodoia R. D. Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature. 1982 Nov 4;300(5887):59–61. doi: 10.1038/300059a0. [DOI] [PubMed] [Google Scholar]
  8. Fesenko E. E., Kolesnikov S. S., Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24;313(6000):310–313. doi: 10.1038/313310a0. [DOI] [PubMed] [Google Scholar]
  9. Haynes L. W., Kay A. R., Yau K. W. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature. 1986 May 1;321(6065):66–70. doi: 10.1038/321066a0. [DOI] [PubMed] [Google Scholar]
  10. Haynes L., Yau K. W. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature. 1985 Sep 5;317(6032):61–64. doi: 10.1038/317061a0. [DOI] [PubMed] [Google Scholar]
  11. Hodgkin A. L., McNaughton P. A., Nunn B. J. The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol. 1985 Jan;358:447–468. doi: 10.1113/jphysiol.1985.sp015561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koch K. W., Kaupp U. B. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem. 1985 Jun 10;260(11):6788–6800. [PubMed] [Google Scholar]
  13. Matthews H. R., Torre V., Lamb T. D. Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature. 1985 Feb 14;313(6003):582–585. doi: 10.1038/313582a0. [DOI] [PubMed] [Google Scholar]
  14. Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
  15. Sitaramayya A., Harkness J., Parkes J. H., Gonzalez-Oliva C., Liebman P. A. Kinetic studies suggest that light-activated cyclic GMP phosphodiesterase is a complex with G-protein subunits. Biochemistry. 1986 Feb 11;25(3):651–656. doi: 10.1021/bi00351a021. [DOI] [PubMed] [Google Scholar]
  16. Yau K. W., Nakatani K. Cation selectivity of light-sensitive conductance in retinal rods. Nature. 1984 May 24;309(5966):352–354. doi: 10.1038/309352a0. [DOI] [PubMed] [Google Scholar]
  17. Yau K. W., Nakatani K. Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature. 1985 Sep 19;317(6034):252–255. doi: 10.1038/317252a0. [DOI] [PubMed] [Google Scholar]
  18. Zimmerman A. L., Baylor D. A. Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature. 1986 May 1;321(6065):70–72. doi: 10.1038/321070a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES