Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Mar;84(5):1263–1267. doi: 10.1073/pnas.84.5.1263

Alteration of the tumorigenic and metastatic properties of neoplastic cells is associated with the process of calcium phosphate-mediated DNA transfection.

R S Kerbel, C Waghorne, M S Man, B Elliott, M L Breitman
PMCID: PMC304407  PMID: 3469668

Abstract

During the course of studies designed to assess the effect of human Ha-ras gene expression on the malignant behavior of transfected mouse tumor cells we noted that the process of Ca3(PO4)2-mediated DNA transfection was itself associated with profound alterations in tumorigenic or metastatic behavior. The cell line used as a recipient for these studies was a tumorigenic nonmetastatic CBA/J mouse mammary adenocarcinoma line called SP1. When cotransfected with plasmids containing the neo gene (pSV2neo) and the activated Ha-ras gene (pT24-c3), cells from the pooled (5-10 colonies) G418-resistant colonies gave rise to spontaneous lung metastases in 85% of mice after subcutaneous inoculation. However, we noted that 17% of control mice inoculated with G418-resistant pSV2neo-transfected SP1 cells also had lung metastases and that this number approached 100% as the inoculum comprised a greater pool size (50-100 colonies). When cell lines established from isolated pSV2neo-transfected colonies were examined, 3/16 were found to be metastatic. We also found that 3/16 clones grew slowly, or not at all, in CBA/J mice, whereas they grew readily in athymic (nude) mice. The increase in immunogenicity of two out of three of these latter clones was accompanied by expression of the class I H-2Dk major histocompatibility complex antigen that was not detectable in the parental SP1 cells. At least some of these results would appear to be due to exposure to Ca3(PO4)2 alone, as we found that it resulted in 5/20 (25%) clones manifesting metastatic properties. Our results suggest that heritable changes in malignant behavior of transfected tumor cells can be observed at high frequency subsequent to the process of Ca3(PO4)2-mediated DNA transfection, and these changes may be brought about in part by inherited disturbances in expression of recipient cell genes.

Full text

PDF
1263

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boon T. Antigenic tumor cell variants obtained with mutagens. Adv Cancer Res. 1983;39:121–151. doi: 10.1016/s0065-230x(08)61034-9. [DOI] [PubMed] [Google Scholar]
  2. Bowen-Pope D. F., Rubin H. Growth stimulatory precipitates of Ca2+ and pyrophosphate. J Cell Physiol. 1983 Oct;117(1):51–61. doi: 10.1002/jcp.1041170109. [DOI] [PubMed] [Google Scholar]
  3. Breitman M. L., Tsui L. C., Buchwald M., Siminovitch L. Introduction and recovery of a selectable bacterial gene from the genome of mammalian cells. Mol Cell Biol. 1982 Aug;2(8):966–976. doi: 10.1128/mcb.2.8.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlow D. A., Kerbel R. S., Feltis J. T., Elliott B. E. Enhanced expression of class I major histocompatibility complex gene (Dk) products on immunogenic variants of a spontaneous murine carcinoma. J Natl Cancer Inst. 1985 Aug;75(2):291–301. [PubMed] [Google Scholar]
  5. DeVries P. J., Davidson R. L., Clough D. W. Ultraviolet-induced reactivation, amplification, and hypomethylation of a herpes simplex virus thymidine kinase gene. Somat Cell Mol Genet. 1984 Nov;10(6):625–632. doi: 10.1007/BF01535228. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Fidler I. J., Hart I. R. Biological diversity in metastatic neoplasms: origins and implications. Science. 1982 Sep 10;217(4564):998–1003. doi: 10.1126/science.7112116. [DOI] [PubMed] [Google Scholar]
  8. Frost P., Liteplo R. G., Donaghue T. P., Kerbel R. S. Selection of strongly immunogenic "tum-" variants from tumors at high frequency using 5-azacytidine. J Exp Med. 1984 May 1;159(5):1491–1501. doi: 10.1084/jem.159.5.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galloway D. A., McDougall J. K. The oncogenic potential of herpes simplex viruses: evidence for a 'hit-and-run' mechanism. Nature. 1983 Mar 3;302(5903):21–24. doi: 10.1038/302021a0. [DOI] [PubMed] [Google Scholar]
  10. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  11. Hunter T. Oncogenes and proto-oncogenes: how do they differ? J Natl Cancer Inst. 1984 Oct;73(4):773–786. [PubMed] [Google Scholar]
  12. Ivarie R. D., Morris J. A. Induction of prolactin-deficient variants of GH3 rat pituitary tumor cells by ethyl methanesulfonate: reversion by 5-azacytidine, a DNA methylation inhibitor. Proc Natl Acad Sci U S A. 1982 May;79(9):2967–2970. doi: 10.1073/pnas.79.9.2967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ivarie R. D., Morris J. A., Martial J. A. Prolactin-deficient variants of GH3 rat pituitary tumor cells: linked expression of prolactin and another hormonally responsive protein in GH3 cells. Mol Cell Biol. 1982 Feb;2(2):179–189. doi: 10.1128/mcb.2.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kastan M. B., Gowans B. J., Lieberman M. W. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA. Cell. 1982 Sep;30(2):509–516. doi: 10.1016/0092-8674(82)90248-3. [DOI] [PubMed] [Google Scholar]
  15. Kerbel R. S., Frost P., Liteplo R., Carlow D. A., Elliott B. E. Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J Cell Physiol Suppl. 1984;3:87–97. doi: 10.1002/jcp.1041210411. [DOI] [PubMed] [Google Scholar]
  16. Lau C. C., Gadi I. K., Kalvonjian S., Anisowicz A., Sager R. Plasmid-induced "hit-and-run" tumorigenesis in Chinese hamster embryo fibroblast (CHEF) cells. Proc Natl Acad Sci U S A. 1985 May;82(9):2839–2843. doi: 10.1073/pnas.82.9.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  18. Ozato K., Mayer N. M., Sachs D. H. Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation. 1982 Sep;34(3):113–120. doi: 10.1097/00007890-198209000-00001. [DOI] [PubMed] [Google Scholar]
  19. Ozato K., Sachs D. H. Monoclonal antibodies to mouse MHC antigens. III. Hybridoma antibodies reacting to antigens of the H-2b haplotype reveal genetic control of isotype expression. J Immunol. 1981 Jan;126(1):317–321. [PubMed] [Google Scholar]
  20. Parker B. A., Stark G. R. Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. J Virol. 1979 Aug;31(2):360–369. doi: 10.1128/jvi.31.2.360-369.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poste G., Fidler I. J. The pathogenesis of cancer metastasis. Nature. 1980 Jan 10;283(5743):139–146. doi: 10.1038/283139a0. [DOI] [PubMed] [Google Scholar]
  22. Pozzatti R., Muschel R., Williams J., Padmanabhan R., Howard B., Liotta L., Khoury G. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science. 1986 Apr 11;232(4747):223–227. doi: 10.1126/science.3456644. [DOI] [PubMed] [Google Scholar]
  23. Pulciani S., Santos E., Lauver A. V., Long L. K., Barbacid M. Transforming genes in human tumors. J Cell Biochem. 1982;20(1):51–61. doi: 10.1002/jcb.240200106. [DOI] [PubMed] [Google Scholar]
  24. Riggs A. D., Jones P. A. 5-methylcytosine, gene regulation, and cancer. Adv Cancer Res. 1983;40:1–30. doi: 10.1016/s0065-230x(08)60678-8. [DOI] [PubMed] [Google Scholar]
  25. Robertson M. Oncogenes and multistep carcinogenesis. Br Med J (Clin Res Ed) 1983 Oct 15;287(6399):1084–1086. doi: 10.1136/bmj.287.6399.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rubin H., Sanui H. Complexes of inorganic pyrophosphate, orthophosphate, and calcium as stimulants of 3T3 cell multiplication. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5026–5030. doi: 10.1073/pnas.74.11.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  28. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  29. Stallcup K. C., Springer T. A., Mescher M. F. Characterization of an anti-H-2 monoclonal antibody and its use in large-scale antigen purification. J Immunol. 1981 Sep;127(3):923–930. [PubMed] [Google Scholar]
  30. Thorgeirsson U. P., Turpeenniemi-Hujanen T., Williams J. E., Westin E. H., Heilman C. A., Talmadge J. E., Liotta L. A. NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Mol Cell Biol. 1985 Jan;5(1):259–262. doi: 10.1128/mcb.5.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Varmus H. E., Quintrell N., Ortiz S. Retroviruses as mutagens: insertion and excision of a nontransforming provirus alter expression of a resident transforming provirus. Cell. 1981 Jul;25(1):23–36. doi: 10.1016/0092-8674(81)90228-2. [DOI] [PubMed] [Google Scholar]
  32. Vousden K. H., Eccles S. A., Purvies H., Marshall C. J. Enhanced spontaneous metastasis of mouse carcinoma cells transfected with an activated c-Ha-ras-1 gene. Int J Cancer. 1986 Mar 15;37(3):425–433. doi: 10.1002/ijc.2910370315. [DOI] [PubMed] [Google Scholar]
  33. Welch D. R., Nicolson G. L. Phenotypic drift and heterogeneity in response of metastatic mammary adenocarcinoma cell clones to adriamycin, 5-fluoro-2'-deoxyuridine and methotrexate treatment in vitro. Clin Exp Metastasis. 1983 Oct-Dec;1(4):317–325. doi: 10.1007/BF00121194. [DOI] [PubMed] [Google Scholar]
  34. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. doi: 10.1016/0092-8674(79)90093-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES