Abstract
In mammalian cells, NAD+ serves a dual role as a respiratory coenzyme and as a substrate for the posttranslational poly(ADP-ribose) modification of chromatin proteins, catalyzed by the nuclear enzyme poly(ADP-ribose) polymerase [NAD+ ADP-ribosyltransferase, EC 2.4.2.30]. Biological evidence strongly suggests that poly(ADP-ribosyl)ation modulates chromatin functions, although the precise molecular mechanisms involved have not yet been elucidated. Here we describe conditions for the rapid uptake of exogenously supplied NAD+ by living hepatocytes in primary monolayer culture. Raising the intracellular NAD+ concentration by 70% caused a 5-fold increase of chromatin-bound poly(ADP-ribose). We conclude that the constitutive level of posttranslational poly(ADP-ribose) modifications of chromatin proteins in mammalian cells is related to the availability of NAD+, which varies in different physiological and pathological states. We propose that poly-(ADP-ribose) may serve a hitherto unrecognized function by signaling altered metabolic conditions to the chromatin and thus modulate its functions in tune with changing metabolic states.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althaus F. R., Lawrence S. D., He Y. Z., Sattler G. L., Tsukada Y., Pitot H. C. Effects of altered [ADP-ribose]n metabolism on expression of fetal functions by adult hepatocytes. Nature. 1982 Nov 25;300(5890):366–368. doi: 10.1038/300366a0. [DOI] [PubMed] [Google Scholar]
- Althaus F. R., Lawrence S. D., Sattler G. L., Pitot H. C. ADP-ribosyltransferase activity in cultured hepatocytes. Interactions with DNA repair. J Biol Chem. 1982 May 25;257(10):5528–5535. [PubMed] [Google Scholar]
- Alvarez-Gonzalez R., Eichenberger R., Loetscher P., Althaus F. R. A new highly selective physicochemical assay to measure NAD+ in intact cells. Anal Biochem. 1986 Aug 1;156(2):473–480. doi: 10.1016/0003-2697(86)90281-2. [DOI] [PubMed] [Google Scholar]
- Aubin R. J., Fréchette A., de Murcia G., Mandel P., Lord A., Grondin G., Poirier G. G. Correlation between endogenous nucleosomal hyper(ADP-ribosyl)ation of histone H1 and the induction of chromatin relaxation. EMBO J. 1983;2(10):1685–1693. doi: 10.1002/j.1460-2075.1983.tb01643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer P. I., Hakam A., Kun E. Mechanisms of poly(ADP-ribose) polymerase catalysis; mono-ADP-ribosylation of poly(ADP-ribose) polymerase at nanomolar concentrations of NAD. FEBS Lett. 1986 Jan 20;195(1-2):331–338. doi: 10.1016/0014-5793(86)80188-0. [DOI] [PubMed] [Google Scholar]
- Berger N. A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985 Jan;101(1):4–15. [PubMed] [Google Scholar]
- Butt T. R., Smulson M. Relationship between nicotinamide adenine dinucleotide concentration and in vitro synthesis of poly(adenosine diphosphate ribose) on purified nucleosomes. Biochemistry. 1980 Nov 11;19(23):5235–5242. doi: 10.1021/bi00564a013. [DOI] [PubMed] [Google Scholar]
- Farzaneh F., Zalin R., Brill D., Shall S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature. 1982 Nov 25;300(5890):362–366. doi: 10.1038/300362a0. [DOI] [PubMed] [Google Scholar]
- Gaal J. C., Pearson C. K. Eukaryotic nuclear ADP-ribosylation reactions. Biochem J. 1985 Aug 15;230(1):1–18. doi: 10.1042/bj2300001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huletsky A., Niedergang C., Fréchette A., Aubin R., Gaudreau A., Poirier G. G. Sequential ADP-ribosylation pattern of nucleosomal histones. ADP-ribosylation of nucleosomal histones. Eur J Biochem. 1985 Jan 15;146(2):277–285. doi: 10.1111/j.1432-1033.1985.tb08650.x. [DOI] [PubMed] [Google Scholar]
- Jackowski G., Kun E. Age-dependent variation of rates of polyadenosine-diphosphoribose synthesis by cardiocyte nuclei and the lack of correlation of enzymatic activity with macromolecular size distribution of DNA. J Biol Chem. 1981 Apr 25;256(8):3667–3670. [PubMed] [Google Scholar]
- Jacobson M. K., Payne D. M., Alvarez-Gonzalez R., Juarez-Salinas H., Sims J. L., Jacobson E. L. Determination of in vivo levels of polymeric and monomeric ADP-ribose by fluorescence methods. Methods Enzymol. 1984;106:483–494. doi: 10.1016/0076-6879(84)06052-3. [DOI] [PubMed] [Google Scholar]
- Juarez-Salinas H., Sims J. L., Jacobson M. K. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature. 1979 Dec 13;282(5740):740–741. doi: 10.1038/282740a0. [DOI] [PubMed] [Google Scholar]
- Kawaichi M., Ueda K., Hayaishi O. Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified synthetase. J Biol Chem. 1981 Sep 25;256(18):9483–9489. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel K. G., Lively M. K., Lombardi D., Amos H. Reactivation of NAD(H) biosynthetic pathway by exogenous NAD+ in Nil cells severely depleted of NAD(H). J Cell Physiol. 1983 Feb;114(2):235–244. doi: 10.1002/jcp.1041140214. [DOI] [PubMed] [Google Scholar]
- Paine A. J., Hockin L. J. Effect of hepatocyte culture conditions on their content of nicotinamide coenzymes [proceedings]. Biochem Soc Trans. 1980 Apr;8(2):183–184. doi: 10.1042/bst0080183. [DOI] [PubMed] [Google Scholar]
- Sugiura M., Fram R., Munroe D., Kufe D. DNA strand scission and ADP-ribosyltransferase activity during murine erythroleukemia cell differentiation. Dev Biol. 1984 Aug;104(2):484–488. doi: 10.1016/0012-1606(84)90105-2. [DOI] [PubMed] [Google Scholar]
- Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
