Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Mar;84(6):1472–1476. doi: 10.1073/pnas.84.6.1472

Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence.

B Lapeyre, H Bourbon, F Amalric
PMCID: PMC304456  PMID: 3470736

Abstract

Nucleolin (also called C23) is the major nucleolar protein of exponentially growing eukaryotic cells. It is found associated with intranucleolar chromatin and preribosomal particles. Through use of a polyclonal antiserum, nucleolin cDNA clones were isolated from a Chinese hamster ovary cell library constructed in the expression vector lambda gt11. The isolated cDNAs encoded a polypeptide containing 679 residues of the 713 amino acids of nucleolin. The amino acid sequence presents several unusual features: in particular, repetitive sequences are found at both ends of the molecule. A repeat, Hy-Thr-Pro-Hy-Lys-Lys-Hy-Hy, in which Hy is a nonpolar residue, is found six times in the NH2-end proximal portion, followed by three acidic stretches containing 25, 25, and 33 glutamic acid or aspartic acid residues. Four potential phosphorylation sites (serines) are also observed in this region. The COOH-terminal proximal portion of the protein carries a glycine-rich region with fairly regularly interspersed phenylalanine and dimethylarginine residues. The two terminal portions of the molecule exhibit unique potential secondary structures: alpha-helix (NH2 terminus) and extended (COOH terminus). The central region exhibits alternating hydrophobic and hydrophilic stretches. Five potential N glycosylation sites are detected. The structure of this protein may reflect two functions in preribosome biogenesis: interaction with chromatin (NH2 terminus) and with preribosomes (COOH terminus).

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouche G., Caizergues-Ferrer M., Bugler B., Amalric F. Interrelations between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic Acids Res. 1984 Apr 11;12(7):3025–3035. doi: 10.1093/nar/12.7.3025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourbon H. M., Bugler B., Caizergues-Ferrer M., Amalric F., Zalta J. P. Maturation of a 100 kDa protein associated with preribosomes in Chinese hamster ovary cells. Mol Biol Rep. 1983 May;9(1-2):39–47. doi: 10.1007/BF00777472. [DOI] [PubMed] [Google Scholar]
  3. Bourbon H., Bugler B., Caizergues-Ferrer M., Amalric F. Role of phosphorylation on the maturation pathways of a 100 kDa nucleolar protein. FEBS Lett. 1983 May 8;155(2):218–222. doi: 10.1016/0014-5793(82)80606-6. [DOI] [PubMed] [Google Scholar]
  4. Bugler B., Caizergues-Ferrer M., Bouche G., Bourbon H., Amalric F. Detection and localization of a class of proteins immunologically related to a 100-kDa nucleolar protein. Eur J Biochem. 1982 Nov 15;128(2-3):475–480. doi: 10.1111/j.1432-1033.1982.tb06989.x. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  6. Duceman B. W., Rose K. M., Jacob S. T. Activation of purified hepatoma RNA polymerase I by homologous protein kinase NII. J Biol Chem. 1981 Nov 10;256(21):10755–10758. [PubMed] [Google Scholar]
  7. Durban E., Goodenough M., Mills J., Busch H. Topoisomerase I phosphorylation in vitro and in rapidly growing Novikoff hepatoma cells. EMBO J. 1985 Nov;4(11):2921–2926. doi: 10.1002/j.1460-2075.1985.tb04024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gas N., Escande M. L., Stevens B. J. Immunolocalization of the 100 kDa nucleolar protein during the mitotic cycle in CHO cells. Biol Cell. 1985;53(3):209–218. doi: 10.1111/j.1768-322x.1985.tb00369.x. [DOI] [PubMed] [Google Scholar]
  9. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  10. Lapeyre B., Amalric F. A powerful method for the preparation of cDNA libraries: isolation of cDNA encoding a 100-kDal nucleolar protein. Gene. 1985;37(1-3):215–220. doi: 10.1016/0378-1119(85)90275-6. [DOI] [PubMed] [Google Scholar]
  11. Lapeyre B., Amalric F., Ghaffari S. H., Rao S. V., Dumbar T. S., Olson M. O. Protein and cDNA sequence of a glycine-rich, dimethylarginine-containing region located near the carboxyl-terminal end of nucleolin (C23 and 100 kDa). J Biol Chem. 1986 Jul 15;261(20):9167–9173. [PubMed] [Google Scholar]
  12. Lapeyre B., Caizergues-Ferrer M., Bouche G., Amalric F. Cloning of cDNA encoding a 100 kDa nucleolar protein (nucleoline) of Chinese hamster ovary cells. Nucleic Acids Res. 1985 Aug 26;13(16):5805–5816. doi: 10.1093/nar/13.16.5805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lischwe M. A., Cook R. G., Ahn Y. S., Yeoman L. C., Busch H. Clustering of glycine and NG,NG-dimethylarginine in nucleolar protein C23. Biochemistry. 1985 Oct 22;24(22):6025–6028. doi: 10.1021/bi00343a001. [DOI] [PubMed] [Google Scholar]
  14. Mamrack M. D., Olson M. O., Busch H. Amino acid sequence and sites of phosphorylation in a highly acidic region of nucleolar nonhistone protein C23. Biochemistry. 1979 Jul 24;18(15):3381–3386. doi: 10.1021/bi00582a026. [DOI] [PubMed] [Google Scholar]
  15. Marvil D. K., Nowak L., Szer W. A single-stranded nucleic acid-binding protein from Artemia salina. I. Purification and characterization. J Biol Chem. 1980 Jul 10;255(13):6466–6472. [PubMed] [Google Scholar]
  16. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  17. Olson M. O., Rivers Z. M., Thompson B. A., Kao W. Y., Case S. T. Interaction of nucleolar phosphoprotein C23 with cloned segments of rat ribosomal deoxyribonucleic acid. Biochemistry. 1983 Jul 5;22(14):3345–3351. doi: 10.1021/bi00283a007. [DOI] [PubMed] [Google Scholar]
  18. Olson M. O., Thompson B. A. Distribution of proteins among chromatin components of nucleoli. Biochemistry. 1983 Jun 21;22(13):3187–3193. doi: 10.1021/bi00282a023. [DOI] [PubMed] [Google Scholar]
  19. Orrick L. R., Olson M. O., Busch H. Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A. 1973 May;70(5):1316–1320. doi: 10.1073/pnas.70.5.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pentecost B., Dixon G. H. Isolation and partial sequence of bovine cDNA clones for the high-mobility-group protein (HMG-1). Biosci Rep. 1984 Jan;4(1):49–57. doi: 10.1007/BF01120823. [DOI] [PubMed] [Google Scholar]
  21. Pfeifle J., Anderer F. A. Localization of phosphoprotein PP 105 in cell lines of various species. Biochem Biophys Res Commun. 1983 Oct 14;116(1):106–112. doi: 10.1016/0006-291x(83)90387-x. [DOI] [PubMed] [Google Scholar]
  22. Prestayko A. W., Klomp G. R., Schmoll D. J., Busch H. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Biochemistry. 1974 Apr 23;13(9):1945–1951. doi: 10.1021/bi00706a026. [DOI] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scheer U., Rose K. M. Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1431–1435. doi: 10.1073/pnas.81.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walker J. M., Goodwin G. H., Johns E. W. The primary structure of the nucleosome-associated chromosomal protein HMG 14. FEBS Lett. 1979 Apr 15;100(2):394–398. doi: 10.1016/0014-5793(79)80378-6. [DOI] [PubMed] [Google Scholar]
  26. Walton G. M., Spiess J., Gill G. N. Phosphorylation of high mobility group protein 14 by casein kinase II. J Biol Chem. 1985 Apr 25;260(8):4745–4750. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES