Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Mar;84(6):1674–1678. doi: 10.1073/pnas.84.6.1674

Human salivary gustin is a potent activator of calmodulin-dependent brain phosphodiesterase.

J S Law, N Nelson, K Watanabe, R I Henkin
PMCID: PMC304499  PMID: 3031646

Abstract

Human salivary gustin stimulated activity of brain calmodulin-dependent cyclic nucleotide phosphodiesterase (cAMP PDEase; 3',5'-cyclic-nucleotide phosphodiesterase, EC 3.1.4.17) in a dose-dependent manner in the absence of calmodulin. At physiological levels found in human saliva, gustin activated cAMP PDEase 5- to 6-fold. Activation of PDEase occurred with as little as 500 ng of gustin. Comparative sensitivity of activation of PDEase by gustin was intermediate between calmodulin and lysophosphatidylcholine with maximal activation and half-maximal activation (indicated in parentheses) at 3 X 10(-8) M (4.3 X 10(-9) M), 3.4 X 10(-6) M (3.4 X 10(-7) M), and 2.5 X 10(-3) M (4.0 X 10(-5) M) for calmodulin, gustin, and lysophosphatidylcholine, respectively. No other major salivary protein activated PDEase. Anticalmodulin antibody completely inhibited calmodulin-activated cAMP PDEase activity, but the antibody had no effect on gustin-activated cAMP PDEase activity. A sensitive calmodulin RIA indicated that no calmodulin was detected in any gustin preparation that activated cAMP PDEase. Both gustin and calmodulin rendered cAMP PDEase thermally labile to a similar extent and increased Vmax without affecting the apparent Km for the substrate cAMP. Activation by gustin and calmodulin was unaffected by lubrol-PX, trypsin inhibitor, pepstatin A, or leupeptin. In the presence of 1 mM EGTA, gustin activated cAMP PDE 5- to 6-fold, but the activating ability was completely lost after gustin was heated at 100 degrees C for 5 min. In contrast, calmodulin lost all activating ability in the presence of 1 mM EGTA, whereas heating calmodulin at 100 degrees C for 5 min did not affect its activation of cAMP PDEase. Lysophosphatidylcholine-activation of cAMP PDEase, like gustin activation, was unaffected by EGTA, but lysophosphatidylcholine-activation of cAMP PDEase, like calmodulin activation, was unaffected by heating at 100 degrees C for 5 min.

Full text

PDF
1674

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal R. P., Henkin R. I. Radioimmunoassay of human salivary amylase: cross-reactivity with human and porcine pancreatic amylase and other salivary proteins. Metabolism. 1984 Sep;33(9):797–807. doi: 10.1016/0026-0495(84)90105-7. [DOI] [PubMed] [Google Scholar]
  2. Boudreau R. J., Drummond G. I. A modified assay of 3':5'-cyclic-AMP phosphodiesterase. Anal Biochem. 1975 Feb;63(2):388–399. doi: 10.1016/0003-2697(75)90361-9. [DOI] [PubMed] [Google Scholar]
  3. Cagan R. H. Biochemical studies of taste sensation: II. Labelling of cyclic AMP of bovine taste papillae in response to sweet and bitter stimuli. J Neurosci Res. 1976;2(5-6):363–371. doi: 10.1002/jnr.490020504. [DOI] [PubMed] [Google Scholar]
  4. Cheung W. Y. Cyclic 3',5'-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J Biol Chem. 1971 May 10;246(9):2859–2869. [PubMed] [Google Scholar]
  5. Cheung W. Y. Cyclic 3',5'-nucleotide phosphodiesterase: pronounced stimulation by snake venom. Biochem Biophys Res Commun. 1967 Nov 30;29(4):478–482. doi: 10.1016/0006-291x(67)90508-6. [DOI] [PubMed] [Google Scholar]
  6. Henkin R. I., Lippoldt R. E., Bilstad J., Edelhoch H. A zinc protein isolated from human parotid saliva. Proc Natl Acad Sci U S A. 1975 Feb;72(2):488–492. doi: 10.1073/pnas.72.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henkin R. I., Mueller C. W., Wolf R. O. Estimation of zinc concentration of parotid saliva by flameless atomic absorption spectrophotometry in normal subjects and in patients with idiopathic hypogeusia. J Lab Clin Med. 1975 Jul;86(1):175–180. [PubMed] [Google Scholar]
  8. Henkin R. I., Schechter P. J., Hoye R., Mattern C. F. Idiopathic hypogeusia with dysgeusia, hyposmia, and dysosmia. A new syndrome. JAMA. 1971 Jul 26;217(4):434–440. [PubMed] [Google Scholar]
  9. Kakiuchi S., Sobue K., Yamazaki R., Kambayashi J., Sakon M., Kosaki G. Lack of tissue specificity of calmodulin: a rapid and high-yield purification method. FEBS Lett. 1981 Apr 20;126(2):203–207. doi: 10.1016/0014-5793(81)80242-6. [DOI] [PubMed] [Google Scholar]
  10. Klee C. B., Krinks M. H. Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry. 1978 Jan 10;17(1):120–126. doi: 10.1021/bi00594a017. [DOI] [PubMed] [Google Scholar]
  11. Kurihara K. Inhibition of cyclic 3',5'-nucleotide phosphodiesterase in bovine taste papillae by bitter taste stimuli. FEBS Lett. 1972 Nov 1;27(2):279–281. doi: 10.1016/0014-5793(72)80640-9. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Law J. S., Henkin R. I. Bovine taste bud cyclic adenosine 3', 5' monophosphate phosphodiesterase is inhibited by divalent metal ions. Res Commun Chem Pathol Pharmacol. 1983 Sep;41(3):455–472. [PubMed] [Google Scholar]
  14. Law J. S., Henkin R. I. Taste bud adenosine -3'5'-monophosphate phosphodiesterase: activity, subcellular distribution and kinetic parameters. Res Commun Chem Pathol Pharmacol. 1982 Dec;38(3):439–452. [PubMed] [Google Scholar]
  15. Law J. S., Henkin R. I. Thyroid hormone inhibits purified taste bud membrane adenosine 3',5'-monophosphate phosphodiesterase activity. Res Commun Chem Pathol Pharmacol. 1984 Mar;43(3):449–462. [PubMed] [Google Scholar]
  16. Lin Y. M., Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem. 1974 Aug 10;249(15):4943–4954. [PubMed] [Google Scholar]
  17. McConnell R. J., Menendez C. E., Smith F. R., Henkin R. I., Rivlin R. S. Defects of taste and smell in patients with hypothyroidism. Am J Med. 1975 Sep;59(3):354–364. doi: 10.1016/0002-9343(75)90394-0. [DOI] [PubMed] [Google Scholar]
  18. Morrill M. E., Thompson S. T., Stellwagen E. Purification of a cyclic nucleotide phosphodiesterase from bovine brain using blue dextran-Sepharose chromatography. J Biol Chem. 1979 Jun 10;254(11):4371–4374. [PubMed] [Google Scholar]
  19. Moss J., Manganiello V. C., Vaughan M. Effects of chymotrypsin and a calcium-dependent protein activator on guanosine 3',5'-monophosphate phosphodiesterase from rat liver. Biochim Biophys Acta. 1978 Jul 3;541(3):279–287. doi: 10.1016/0304-4165(78)90188-5. [DOI] [PubMed] [Google Scholar]
  20. Pichard A. L., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Stimulation of bovine brain cytoplasmic enzyme by lysophosphatidylcholine. J Biol Chem. 1977 Jul 25;252(14):4872–4875. [PubMed] [Google Scholar]
  21. Price S. Phosphodiesterase in tongue epithelium: activation by bitter taste stimuli. Nature. 1973 Jan 5;241(5384):54–55. doi: 10.1038/241054a0. [DOI] [PubMed] [Google Scholar]
  22. Sakai T., Makino H., Tanaka R. Increased activity of cyclic AMP phosphodiesterase from frozen-thawed rat liver. A role of lysosomal protease in enzyme activation. Biochim Biophys Acta. 1978 Feb 10;522(2):477–490. doi: 10.1016/0005-2744(78)90080-3. [DOI] [PubMed] [Google Scholar]
  23. Shatzman A. R., Henkin R. I. Gustin concentration changes relative to salivary zinc and taste in humans. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3867–3871. doi: 10.1073/pnas.78.6.3867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shatzman A. R., Henkin R. I. Metal-binding characteristics of the parotid salivary protein gustin. Biochim Biophys Acta. 1980 May 29;623(1):107–118. doi: 10.1016/0005-2795(80)90013-6. [DOI] [PubMed] [Google Scholar]
  25. Shatzman A. R., Henkin R. I. The proline-, glycine-, glutamic acid-rich pink-violet staining proteins in human parotid saliva are phosphoproteins. Biochem Med. 1983 Apr;29(2):182–193. doi: 10.1016/0006-2944(83)90039-x. [DOI] [PubMed] [Google Scholar]
  26. Wells J. N., Hardman J. G. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1977;8:119–143. [PubMed] [Google Scholar]
  27. Wolff D. J., Brostrom C. O. Calcium-dependent cyclic nucleotide phosphodiesterase from brain identification of phospholipids as calcium-independent activators. Arch Biochem Biophys. 1976 Apr;173(2):720–731. doi: 10.1016/0003-9861(76)90310-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES