Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Mar;84(6):1713–1717. doi: 10.1073/pnas.84.6.1713

Distribution of calcium and potassium in presynaptic nerve terminals from cerebellar cortex.

S B Andrews, R D Leapman, D M Landis, T S Reese
PMCID: PMC304507  PMID: 3470753

Abstract

The elemental composition of the presynaptic nerve terminals in rapidly frozen synapses of the cerebellar molecular layer was determined by electron probe x-ray microanalysis and elemental imaging of characteristic x-rays. Elemental imaging of thin freeze-dried cryosections from fresh cerebellar slices frozen within 20 sec of removal from the brain showed normal concentrations of potassium (95 +/- 6 mmol/liter wet tissue +/- SEM) and calcium (0.8 +/- 0.4 mmol/liter) in whole presynaptic terminals, even though mitochondrial and nonmitochondrial sites containing up to 30 mmol of calcium per liter were present elsewhere in the neuropil. Quantitative electron probe analysis of synaptic vesicle clusters and intraterminal mitochondria indicated that their calcium concentrations were 0.4 +/- 0.1 and 1.2 +/- 0.2 mmol/liter, respectively. The low calcium content of presynaptic organelles was confirmed by the absence of detectable deposits in preparations freeze-substituted so as to stabilize calcium content. Similar experiments were carried out on cerebellar slices rapidly frozen after incubation in vitro. The distribution of potassium and calcium in presynaptic terminals of resting and depolarized (55 mM potassium) slices was qualitatively and quantitatively similar to that in freshly excised cortex, although resting slices lacked the few calcium-rich sites that appeared in other areas of the neuropil after stimulation. The calcium concentrations in whole terminals, synaptic vesicles, and mitochondria of resting slices were 1.4 +/- 0.7, 0.7 +/- 0.2, and 0.9 +/- 0.2 mmol/liter, respectively. Thus, amounts of calcium typical of storage organelles in other tissues are not present within cerebellar synaptic vesicles, suggesting that they have a limited role in calcium storage and release.

Full text

PDF
1713

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews S. B., Mazurkiewicz J. E., Kirk R. G. The distribution of intracellular ions in the avian salt gland. J Cell Biol. 1983 May;96(5):1389–1399. doi: 10.1083/jcb.96.5.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P., McGraw C. F., Somlyo A. V., Schweitzer E. S. How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 1980 Sep;76(5):459–470. [PubMed] [Google Scholar]
  4. Bond M., Kitazawa T., Somlyo A. P., Somlyo A. V. Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle. J Physiol. 1984 Oct;355:677–695. doi: 10.1113/jphysiol.1984.sp015445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bulenda D., Gratzl M. Matrix free Ca2+ in isolated chromaffin vesicles. Biochemistry. 1985 Dec 17;24(26):7760–7765. doi: 10.1021/bi00347a039. [DOI] [PubMed] [Google Scholar]
  6. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henkart M. P., Reese T. S., Brinley F. J., Jr Endoplasmic reticulum sequesters calcium in the squid giant axon. Science. 1978 Dec 22;202(4374):1300–1303. doi: 10.1126/science.725607. [DOI] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Israël M., Manaranche R., Marsal J., Meunier F. M., Morel N., Frachon P., Lesbats B. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ. J Membr Biol. 1980 May 23;54(2):115–126. doi: 10.1007/BF01940565. [DOI] [PubMed] [Google Scholar]
  10. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Landis D. M., Reese T. S. Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol. 1983 Oct;97(4):1169–1178. doi: 10.1083/jcb.97.4.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lazarewicz J. W., Haljamäe H., Hamberger A. Calcium metabolism in isolated brain cells and subcellular fractions. J Neurochem. 1974 Jan;22(1):33–45. doi: 10.1111/j.1471-4159.1974.tb12176.x. [DOI] [PubMed] [Google Scholar]
  13. McGraw C. F., Somlyo A. V., Blaustein M. P. Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J Cell Biol. 1980 May;85(2):228–241. doi: 10.1083/jcb.85.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Michaelson D. M., Ophir I., Angel I. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. J Neurochem. 1980 Jul;35(1):116–124. doi: 10.1111/j.1471-4159.1980.tb12496.x. [DOI] [PubMed] [Google Scholar]
  15. Miledi R. Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc Lond B Biol Sci. 1973 Jul 3;183(1073):421–425. doi: 10.1098/rspb.1973.0026. [DOI] [PubMed] [Google Scholar]
  16. Neering I. R., McBurney R. N. Role for microsomal Ca storage in mammalian neurones? Nature. 1984 May 10;309(5964):158–160. doi: 10.1038/309158a0. [DOI] [PubMed] [Google Scholar]
  17. Nordmann J. J., Chevallier J. The role of microvesicles in buffering [Ca2+]i in the neurohypophysis. Nature. 1980 Sep 4;287(5777):54–56. doi: 10.1038/287054a0. [DOI] [PubMed] [Google Scholar]
  18. Ornberg R. L., Reese T. S. A freeze-substitution method for localizing divalent cations: examples from secretory systems. Fed Proc. 1980 Aug;39(10):2802–2808. [PubMed] [Google Scholar]
  19. Pappas G. D., Rose S. Localization of calcium deposits in the frog neuromuscular junction at rest and following stimulation. Brain Res. 1976 Feb 20;103(2):362–365. doi: 10.1016/0006-8993(76)90806-4. [DOI] [PubMed] [Google Scholar]
  20. Pappius H. M. The chemistry and fine structure in various types of cerebral edema. Riv Patol Nerv Ment. 1970 Dec;91(6):311–322. [PubMed] [Google Scholar]
  21. Schmidt R., Zimmermann H., Whittaker V. P. Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: effect of stimulation-induced transmitter release. Neuroscience. 1980;5(3):625–638. doi: 10.1016/0306-4522(80)90060-3. [DOI] [PubMed] [Google Scholar]
  22. Shuman H., Somlyo A. V., Somlyo A. P. Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy. 1976 Sep-Oct;1(4):317–339. doi: 10.1016/0304-3991(76)90049-8. [DOI] [PubMed] [Google Scholar]
  23. Somlyo A. P., Bond M., Somlyo A. V. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature. 1985 Apr 18;314(6012):622–625. doi: 10.1038/314622a0. [DOI] [PubMed] [Google Scholar]
  24. Somlyo A. P. Cell physiology: cellular site of calcium regulation. Nature. 1984 Jun 7;309(5968):516–517. doi: 10.1038/309516b0. [DOI] [PubMed] [Google Scholar]
  25. Somlyo A. V., Shuman H., Somlyo A. P. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryo sections. J Cell Biol. 1977 Sep;74(3):828–857. doi: 10.1083/jcb.74.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. VANHARREVELD A., CROWELL J. ELECTRON MICROSCOPY AFTER RAPID FREEZING ON A METAL SURFACE AND SUBSTITUTION FIXATION. Anat Rec. 1964 Jul;149:381–385. doi: 10.1002/ar.1091490307. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES