Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Mar;84(6):1718–1720. doi: 10.1073/pnas.84.6.1718

Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl.

S M Bagnasco, S Uchida, R S Balaban, P F Kador, M B Burg
PMCID: PMC304508  PMID: 3104902

Abstract

Aldose reductase [aldehyde reductase 2; alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21] catalyzes conversion of glucose to sorbitol. Although its activity is implicated in the progression of ocular and neurological complications of diabetes, the normal function of the enzyme in most cells is unknown. Both aldose reductase activity and substantial levels of sorbitol were previously reported in renal inner medullary cells. In this tissue, the extracellular NaCl concentration normally is high and varies considerably depending on the urine concentration. We report here on a line of renal medullary cells in which medium that is high in NaCl greatly increases both aldose reductase activity and intracellular sorbitol. In these tissue culture cells (and presumably also in the renal inner medulla), the intracellular sorbitol helps balance the osmotic pressure of elevated extracellular NaCl and thus prevents cellular dehydration.

Full text

PDF
1718

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagnasco S., Balaban R., Fales H. M., Yang Y. M., Burg M. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem. 1986 May 5;261(13):5872–5877. [PubMed] [Google Scholar]
  2. Beck F., Dörge A., Rick R., Thurau K. Osmoregulation of renal papillary cells. Pflugers Arch. 1985;405 (Suppl 1):S28–S32. doi: 10.1007/BF00581776. [DOI] [PubMed] [Google Scholar]
  3. Cogan D. G., Kinoshita J. H., Kador P. F., Robison G., Datilis M. B., Cobo L. M., Kupfer C. NIH conference. Aldose reductase and complications of diabetes. Ann Intern Med. 1984 Jul;101(1):82–91. doi: 10.7326/0003-4819-101-1-82. [DOI] [PubMed] [Google Scholar]
  4. Collins J. G., Corder C. N. Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens. Invest Ophthalmol Vis Sci. 1977 Mar;16(3):242–243. [PubMed] [Google Scholar]
  5. Das B., Srivastava S. K. Activation of aldose reductase from human tissues. Diabetes. 1985 Nov;34(11):1145–1151. doi: 10.2337/diab.34.11.1145. [DOI] [PubMed] [Google Scholar]
  6. Gabbay K. H., Cathcart E. S. Purification and immunologic identification of aldose reductases. Diabetes. 1974 May;23(5):460–468. doi: 10.2337/diab.23.5.460. [DOI] [PubMed] [Google Scholar]
  7. Herrmann R. K., Kador P. F., Kinoshita J. H. Rat lens aldose reductase: rapid purification and comparison with human placental aldose reductase. Exp Eye Res. 1983 Nov;37(5):467–474. doi: 10.1016/0014-4835(83)90022-2. [DOI] [PubMed] [Google Scholar]
  8. Kador P. F., Carper D., Kinoshita J. H. Rapid purification of human placental aldose reductase. Anal Biochem. 1981 Jun;114(1):53–58. doi: 10.1016/0003-2697(81)90450-4. [DOI] [PubMed] [Google Scholar]
  9. Kador P. F., Robison W. G., Jr, Kinoshita J. H. The pharmacology of aldose reductase inhibitors. Annu Rev Pharmacol Toxicol. 1985;25:691–714. doi: 10.1146/annurev.pa.25.040185.003355. [DOI] [PubMed] [Google Scholar]
  10. Turner A. J., Flynn T. G. The nomenclature of aldehyde reductases. Prog Clin Biol Res. 1982;114:401–402. [PubMed] [Google Scholar]
  11. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES