Abstract
Norepinephrine and its closely related analogues, dopamine and epinephrine, are transported into chromaffin cells in culture by two distinct types of sites on the plasma membrane: one is sensitive to cocaine while the other is not. The cocaine-sensitive site has a high affinity for catecholamines and depends on sodium in the medium. The apparent Km for norepinephrine uptake by the cocaine-sensitive site is 5.8 microM when determined in the presence of 118 mM NaCl, obtained using nonlinear least-square curve fitting. Detailed kinetic analysis has also shown cocaine to be a competitive inhibitor of norepinephrine uptake with an apparent Ki of ca. 1 microM. This site is blocked by a series of tricyclic antidepressant drugs with relative potencies characteristic of norepinephrine transport sites in neurons. In contrast, the cocaine-insensitive site(s) have a low affinity for norepinephrine (apparent Km, approximately 88 microM) and are also able to transport catecholamine analogues such as dimethyl-epinephrine and isoproterenol, which have bulky groups attached to the amine moiety. Transport of norepinephrine at both sites is blocked by low temperature, by mitochondrial uncouplers, and by other metabolic inhibitors. Both of these transport sites in the chromaffin cell plasma membrane, therefore, appear to be different from the well-characterized catecholamine transport sites in the chromaffin granule membrane on the basis of substrate specificity and their sensitivity to inhibitors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
- Banerjee D. K., Ornberg R. L., Youdim M. B., Heldman E., Pollard H. B. Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4702–4706. doi: 10.1073/pnas.82.14.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashford C. L., Casey R. P., Radda G. K., Ritchie G. A. The effect of uncouplers on catecholamine incorporation by vesicles of chromaffin granules. Biochem J. 1975 Apr;148(1):153–155. doi: 10.1042/bj1480153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashford C. L., Radda G. K., Ritchie G. A. Energy-linked activities of the chromaffin granule membrane. FEBS Lett. 1975 Jan 15;50(1):21–24. doi: 10.1016/0014-5793(75)81031-3. [DOI] [PubMed] [Google Scholar]
- Casey R. P., Njus D., Radda G. K., Sehr P. A. Active proton uptake by chromaffin granules: observation by amine distribution and phosphorus-31 nuclear magnetic resonance techniques. Biochemistry. 1977 Mar 8;16(5):972–977. doi: 10.1021/bi00624a025. [DOI] [PubMed] [Google Scholar]
- Cidon S., Nelson N. A novel ATPase in the chromaffin granule membrane. J Biol Chem. 1983 Mar 10;258(5):2892–2898. [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Gabizon R., Yetinson T., Schuldiner S. Photoinactivation and identification of the biogenic amine transporter in chromaffin granules from bovine adrenal medulla. J Biol Chem. 1982 Dec 25;257(24):15145–15150. [PubMed] [Google Scholar]
- Holz R. W. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5190–5194. doi: 10.1073/pnas.75.10.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn A. S. Structure-activity relations for the inhibition of catecholamine uptake into synaptosomes from noradrenaline and dopaminergic neurones in rat brain homogenates. Br J Pharmacol. 1973 Feb;47(2):332–338. doi: 10.1111/j.1476-5381.1973.tb08331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. G., Carty S. E., Hayflick S., Scarpa A. Mechanisms of accumulation of tyramine, metaraminol, and isoproterenol in isolated chromaffin granules and ghosts. Biochem Pharmacol. 1982 Mar 1;31(5):815–823. doi: 10.1016/0006-2952(82)90468-3. [DOI] [PubMed] [Google Scholar]
- Johnson R. G., Scarpa A. Protonmotive force and catecholamine transport in isolated chromaffin granules. J Biol Chem. 1979 May 25;254(10):3750–3760. [PubMed] [Google Scholar]
- Kenigsberg R. L., Trifaró J. M. Presence of a high affinity uptake system for catecholamines in cultured bovine adrenal chromaffin cells. Neuroscience. 1980;5(9):1547–1556. doi: 10.1016/0306-4522(80)90019-6. [DOI] [PubMed] [Google Scholar]
- Knoth J., Handloser K., Njus D. Electrogenic epinephrine transport in chromaffin granule ghosts. Biochemistry. 1980 Jun 24;19(13):2938–2942. doi: 10.1021/bi00554a019. [DOI] [PubMed] [Google Scholar]
- Knoth J., Isaacs J. M., Njus D. Amine transport in chromaffin granule ghosts. pH dependence implies cationic form is translocated. J Biol Chem. 1981 Jul 10;256(13):6541–6543. [PubMed] [Google Scholar]
- Levine M. A., Pollard H. B. Hydrocortisone inhibition of ascorbic acid transport by chromaffin cells. FEBS Lett. 1983 Jul 11;158(1):134–138. doi: 10.1016/0014-5793(83)80693-0. [DOI] [PubMed] [Google Scholar]
- Levine M. Ascorbic acid specifically enhances dopamine beta-monooxygenase activity in resting and stimulated chromaffin cells. J Biol Chem. 1986 Jun 5;261(16):7347–7356. [PubMed] [Google Scholar]
- Lutz R. A., Bull C., Rodbard D. Computer analysis of enzyme-substrate-inhibitor kinetic data with automatic model selection using IBM-PC compatible microcomputers. Enzyme. 1986;36(3):197–206. doi: 10.1159/000469292. [DOI] [PubMed] [Google Scholar]
- Pollard H. B., Menard R., Brandt H. A., Pazoles C. J., Creutz C. E., Ramu A. Application of Bradford's protein assay to adrenal gland subcellular fractions. Anal Biochem. 1978 Jun 1;86(2):761–763. doi: 10.1016/0003-2697(78)90805-9. [DOI] [PubMed] [Google Scholar]
- Pollard H. B., Pazoles C. J., Creutz C. E., Scott J. H., Zinder O., Hotchkiss A. An osmotic mechanism for exocytosis from dissociated chromaffin cells. J Biol Chem. 1984 Jan 25;259(2):1114–1121. [PubMed] [Google Scholar]
- Ramu A., Levine M., Pollard H. Chemical evidence that catecholamines are transported across the chromaffin granule membrane as noncationic species. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2107–2111. doi: 10.1073/pnas.80.8.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rehavi M., Skolnick P., Brownstein M. J., Paul S. M. High-affinity binding of [3H]desipramine to rat brain: a presynaptic marker for noradrenergic uptake sites. J Neurochem. 1982 Apr;38(4):889–895. doi: 10.1111/j.1471-4159.1982.tb05326.x. [DOI] [PubMed] [Google Scholar]
- Rodbard D., Lenox R. H., Wray H. L., Ramseth D. Statistical characterization of the random errors in the radioimmunoassay dose--response variable. Clin Chem. 1976 Mar;22(3):350–358. [PubMed] [Google Scholar]
- Role L. W., Perlman R. L. Both nicotinic and muscarinic receptors mediate catecholamine secretion by isolated guinea-pig chromaffin cells. Neuroscience. 1983 Nov;10(3):979–985. doi: 10.1016/0306-4522(83)90236-1. [DOI] [PubMed] [Google Scholar]
- Role L. W., Perlman R. L. Catecholamine uptake into isolated adrenal chromaffin cells: inhibition of uptake by acetylcholine. Neuroscience. 1983 Nov;10(3):987–996. doi: 10.1016/0306-4522(83)90237-3. [DOI] [PubMed] [Google Scholar]
- Scherman D., Henry J. P. pH-dependence of the ATP-driven uptake of noradrenaline by bovine chromaffin-granule ghosts. Eur J Biochem. 1981 Jun 1;116(3):535–539. doi: 10.1111/j.1432-1033.1981.tb05369.x. [DOI] [PubMed] [Google Scholar]
- Scherman D., Jaudon P., Henry J. P. Characterization of the monoamine carrier of chromaffin granule membrane by binding of [2-3H]dihydrotetrabenazine. Proc Natl Acad Sci U S A. 1983 Jan;80(2):584–588. doi: 10.1073/pnas.80.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
