Abstract
Evidence is presented that a sporulation-essential sigma factor of Bacillus subtilis, sigma 29, is synthesized as an inactive precursor (P31) and that its activation occurs by a developmentally regulated cleavage of 29 amino acids from the P31 amino terminus. A pulse-chase experiment demonstrated that sigma 29 was derived from a preexisting protein, with appearance of radioactively labeled sigma 29 paralleling the disappearance of labeled P31. The disappearance of pulse-labeled P31 did not occur when the experiment was done with a B. subtilis strain carrying a mutation in a locus (spoIIE) required for sigma 29, but not P31, synthesis. Microsequencing of sigma 29 protein revealed that its amino terminus originates at amino acid 30 of the P31 amino acid sequence. In order to test whether a proteolytic event alone could activate P31 to a protein with sigma 29-like properties, a fusion protein (P31*) containing most of P31 was overproduced in Escherichia coli and converted in vitro into a protein with the electrophoretic mobility of sigma 29 by limited treatment with Staphylococcus aureus V8 protease. Protease-treated P31*, but not untreated P31*, was capable of directing B. subtilis core RNA polymerase to specifically initiate RNA synthesis at a sigma 29-recognized promoter in vitro.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fukuda R., Doi R. H. Two polypeptides associated with the ribonucleic acid polymerase core of Bacillus subtilis during sporulation. J Bacteriol. 1977 Jan;129(1):422–432. doi: 10.1128/jb.129.1.422-432.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
- Haldenwang W. G., Lang N., Losick R. A sporulation-induced sigma-like regulatory protein from B. subtilis. Cell. 1981 Feb;23(2):615–624. doi: 10.1016/0092-8674(81)90157-4. [DOI] [PubMed] [Google Scholar]
- Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
- Kessler S. W. Use of protein A-bearing staphylococci for the immunoprecipitation and isolation of antigens from cells. Methods Enzymol. 1981;73(Pt B):442–459. doi: 10.1016/0076-6879(81)73084-2. [DOI] [PubMed] [Google Scholar]
- Linn T., Greenleaf A. L., Losick R. RNA polymerase from sporulating Bacillus subtilis. Purification and properties of a modified form of the enzyme containing two sporulation polypeptides. J Biol Chem. 1975 Dec 25;250(24):9256–9261. [PubMed] [Google Scholar]
- Ray G. L., Haldenwang W. G. Isolation of Bacillus subtilis genes transcribed in vitro and in vivo by a major sporulation-induced, DNA-dependent RNA polymerase. J Bacteriol. 1986 May;166(2):472–478. doi: 10.1128/jb.166.2.472-478.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trempy J. E., Bonamy C., Szulmajster J., Haldenwang W. G. Bacillus subtilis sigma factor sigma 29 is the product of the sporulation-essential gene spoIIG. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4189–4192. doi: 10.1073/pnas.82.12.4189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trempy J. E., Morrison-Plummer J., Haldenwang W. G. Synthesis of sigma 29, an RNA polymerase specificity determinant, is a developmentally regulated event in Bacillus subtilis. J Bacteriol. 1985 Jan;161(1):340–346. doi: 10.1128/jb.161.1.340-346.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]