Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Apr;84(7):1824–1828. doi: 10.1073/pnas.84.7.1824

Cauliflower mosaic virus coat protein is phosphorylated in vitro by a virion-associated protein kinase

José Martinez-Izquierdo 1, Thomas Hohn 1
PMCID: PMC304533  PMID: 16593818

Abstract

A protein kinase has been found to be associated with particles of the plant virus cauliflower mosaic virus. This protein kinase can phosphorylate endogenous viral capsid proteins in vitro and exchange substrates with casein kinase type II. The activity is not affected by cAMP but is enhanced considerably by ADP. The cofactor is either Mn2+ or Mg2+, and the phosphate donor is either ATP or GTP. Serine and threonine residues are phosphorylated.

Keywords: ADP, casein kinase, plant virus, retroid virus, reverse transcription

Full text

PDF
1824

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akusjärvi G., Philipson L., Pettersson U. A protein kinase associated with adenovirus type 2. Virology. 1978 Jun 15;87(2):276–286. doi: 10.1016/0042-6822(78)90133-2. [DOI] [PubMed] [Google Scholar]
  2. Al Ani R., Pfeiffer P., Lebeurier G. The structure of cauliflower mosaic virus. II. Identity and location of the viral polypeptides. Virology. 1979 Feb;93(1):188–197. doi: 10.1016/0042-6822(79)90286-1. [DOI] [PubMed] [Google Scholar]
  3. Bell J. C., Brown E. G., Takayesu D., Prevec L. Protein kinase activity associated with immunoprecipitates of the vesicular stomatitis virus phosphoprotein NS. Virology. 1984 Jan 30;132(2):229–238. doi: 10.1016/0042-6822(84)90030-8. [DOI] [PubMed] [Google Scholar]
  4. Besman M., Coleman J. E. Isozymes of bovine intestinal alkaline phosphatase. J Biol Chem. 1985 Sep 15;260(20):11190–11193. [PubMed] [Google Scholar]
  5. Bitte L., Kabat D. Isotopic labeling and analysis of phosphoproteins from mammalian ribosomes. Methods Enzymol. 1974;30:563–590. doi: 10.1016/0076-6879(74)30056-0. [DOI] [PubMed] [Google Scholar]
  6. Britt W. J., Auger D. Human cytomegalovirus virion-associated protein with kinase activity. J Virol. 1986 Jul;59(1):185–188. doi: 10.1128/jvi.59.1.185-188.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burger J. G., Du Plessis D. Detection of partially proteolysed cauliflower mosaic virus coat protein in infected leaf tissue by Western blotting. J Virol Methods. 1983 Jul;7(1):11–19. doi: 10.1016/0166-0934(83)90018-6. [DOI] [PubMed] [Google Scholar]
  8. Chan P. K., Aldrich M., Cook R. G., Busch H. Amino acid sequence of protein B23 phosphorylation site. J Biol Chem. 1986 Feb 5;261(4):1868–1872. [PubMed] [Google Scholar]
  9. Cheng A., Fitzgerald T. J., Carlson G. M. Adenosine 5'-diphosphate as an allosteric effector of phosphorylase kinase from rabbit skeletal muscle. J Biol Chem. 1985 Feb 25;260(4):2535–2542. [PubMed] [Google Scholar]
  10. Covey S. N. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 1986 Jan 24;14(2):623–633. doi: 10.1093/nar/14.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emori Y., Shiba T., Kanaya S., Inouye S., Yuki S., Saigo K. The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. 1985 Jun 27-Jul 3Nature. 315(6022):773–776. doi: 10.1038/315773a0. [DOI] [PubMed] [Google Scholar]
  12. Franck A., Guilley H., Jonard G., Richards K., Hirth L. Nucleotide sequence of cauliflower mosaic virus DNA. Cell. 1980 Aug;21(1):285–294. doi: 10.1016/0092-8674(80)90136-1. [DOI] [PubMed] [Google Scholar]
  13. Fu X., Phillips N., Jentoft J., Tuazon P. T., Traugh J. A., Leis J. Site-specific phosphorylation of avian retrovirus nucleocapsid protein pp12 regulates binding to viral RNA. Evidence for different protein conformations. J Biol Chem. 1985 Aug 15;260(17):9941–9947. [PubMed] [Google Scholar]
  14. Harwood H. J., Jr, Brandt K. G., Rodwell V. W. Allosteric activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by nucleoside diphosphates. J Biol Chem. 1984 Mar 10;259(5):2810–2815. [PubMed] [Google Scholar]
  15. Hassauer M., Scheidtmann K. H., Walter G. Mapping of phosphorylation sites in polyomavirus large T antigen. J Virol. 1986 Jun;58(3):805–816. doi: 10.1128/jvi.58.3.805-816.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hathaway G. M., Lubben T. H., Traugh J. A. Inhibition of casein kinase II by heparin. J Biol Chem. 1980 Sep 10;255(17):8038–8041. [PubMed] [Google Scholar]
  17. Hathaway G. M., Traugh J. A. Casein kinase II. Methods Enzymol. 1983;99:317–331. doi: 10.1016/0076-6879(83)99067-5. [DOI] [PubMed] [Google Scholar]
  18. Howard C. R., Buchmeier M. J. A protein kinase activity in lymphocytic choriomeningitis virus and identification of the phosphorylated product using monoclonal antibody. Virology. 1983 Apr 30;126(2):538–547. doi: 10.1016/s0042-6822(83)80011-7. [DOI] [PubMed] [Google Scholar]
  19. Hull R., Shepherd R. J. The coat proteins of cauliflower mosaic virus. Virology. 1976 Mar;70(1):217–220. doi: 10.1016/0042-6822(76)90257-9. [DOI] [PubMed] [Google Scholar]
  20. Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamb R. A., Choppin P. W. The synthesis of Sendai virus polypeptides in infected cells. III. Phosphorylation of polypeptides. Virology. 1977 Sep;81(2):382–397. doi: 10.1016/0042-6822(77)90154-4. [DOI] [PubMed] [Google Scholar]
  22. Lee S. G., Miceli M. V., Jungmann R. A., Hung P. P. Protein kinase and its regulatory effect on reverse transcriptase activity of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2945–2949. doi: 10.1073/pnas.72.8.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martin-Pérez J., Thomas G. Ordered phosphorylation of 40S ribosomal protein S6 after serum stimulation of quiescent 3T3 cells. Proc Natl Acad Sci U S A. 1983 Feb;80(4):926–930. doi: 10.1073/pnas.80.4.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maxwell S. A., Arlinghaus R. B. Serine kinase activity associated with Maloney murine sarcoma virus-124-encoded p37mos. Virology. 1985 May;143(1):321–333. doi: 10.1016/0042-6822(85)90119-9. [DOI] [PubMed] [Google Scholar]
  25. Mellor J., Fulton A. M., Dobson M. J., Roberts N. A., Wilson W., Kingsman A. J., Kingsman S. M. The Ty transposon of Saccharomyces cerevisiae determines the synthesis of at least three proteins. Nucleic Acids Res. 1985 Sep 11;13(17):6249–6263. doi: 10.1093/nar/13.17.6249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mellor J., Malim M. H., Gull K., Tuite M. F., McCready S., Dibbayawan T., Kingsman S. M., Kingsman A. J. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature. 1985 Dec 12;318(6046):583–586. doi: 10.1038/318583a0. [DOI] [PubMed] [Google Scholar]
  27. Naso R. B., Karshin W. L., Wu Y. H., Arlinghaus R. B. Characterization of 40,000- and 25,000-dalton intermediate precursors to Rauscher murine leukemia virus gag gene products. J Virol. 1979 Oct;32(1):187–198. doi: 10.1128/jvi.32.1.187-198.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paoletti E., Moss B. Protein kinase and specific phosphate acceptor proteins associated with vaccinia virus cores. J Virol. 1972 Sep;10(3):417–424. doi: 10.1128/jvi.10.3.417-424.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Petit M. A., Pillot J. HBc and HBe antigenicity and DNA-binding activity of major core protein P22 in hepatitis B virus core particles isolated from the cytoplasm of human liver cells. J Virol. 1985 Feb;53(2):543–551. doi: 10.1128/jvi.53.2.543-551.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts C. H., Chlebowski J. F. Trypsin-modified alkaline phosphatase. Formation of apoenzyme monomer and hybrid dimer. J Biol Chem. 1985 Jun 25;260(12):7557–7561. [PubMed] [Google Scholar]
  31. Roby C., Gibson W. Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J Virol. 1986 Sep;59(3):714–727. doi: 10.1128/jvi.59.3.714-727.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sen A., Sherr C. J., Todaro G. J. Phosphorylation of murine type C viral p12 proteins regulates their extent of binding to the homologous viral RNA. Cell. 1977 Mar;10(3):489–496. doi: 10.1016/0092-8674(77)90036-8. [DOI] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vincent A. TFIIIA and homologous genes. The 'finger' proteins. Nucleic Acids Res. 1986 Jun 11;14(11):4385–4391. doi: 10.1093/nar/14.11.4385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yoshinaka Y., Luftig R. B. In vitro phosphorylation of murine leukemia virus proteins: specific phosphorylation of Pr65gag, the precursor of the internal core antigens. Virology. 1982 Jan 15;116(1):181–195. doi: 10.1016/0042-6822(82)90412-3. [DOI] [PubMed] [Google Scholar]
  36. Yoshinaka Y., Shames R., Luftig R. B. Separation of a murine leukaemia virus protein kinase activity from its Pr65gag polyprotein substrate after DNA--cellulose chromatography. J Gen Virol. 1983 Jan;64(Pt 1):95–102. doi: 10.1099/0022-1317-64-1-95. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES