Abstract
Two major polypeptide species, 31,000 Mr (p31) and 31,500 Mr (p31.5), are associated with the 3' poly(A) tails of Dictyostelium mRNAs. We have measured the accumulation of newly synthesized p31 and p31.5 and the decay of preexisting p31 and p31.5 during heat shock and early development. Only trace amounts of newly synthesized p31 and p31.5 accumulate at elevated temperatures, indicating that these polypeptides are not heat shock proteins. In addition, preexisting p31 and p31.5 are rapidly degraded in heat-shocked cells. This degradation is selective and occurs simultaneously with a sharp drop in the rate of translational initiation. Similarly, in early development, a time when the rate of translational initiation is also sharply reduced, only trace amounts of newly synthesized p31 and p31.5 accumulate and most of the preexisting p31 and p31.5 is rapidly degraded. When translational elongation is inhibited with cycloheximide, preexisting p31 and p31.5 remain stable. Therefore, a correlation seems to exist between the abundance and stability of these poly(A)-associated proteins and the rate of translational initiation. Our results are consistent with the proposed role of the poly(A)-protein complex in translation and do not support the findings of Schönfelder et al. [Schönfelder, M., Horsch, A. & Schmid, H.-P. (1985) Proc. Natl. Acad. Sci. USA 82, 6884-6888] that the 73,000 Mr HeLa cell poly(A)-binding protein and the major 73,000 Mr mammalian heat shock protein (i.e., hsp70) are identical.
Full text
PDF![1858](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d14/304540/f68036d87905/pnas00272-0139.png)
![1859](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d14/304540/c0f8afa0a15c/pnas00272-0140.png)
![1860](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d14/304540/1ac0406e7b46/pnas00272-0141.png)
![1861](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d14/304540/dabf4e9888a3/pnas00272-0142.png)
![1862](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d14/304540/e88c8fd96188/pnas00272-0143.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam S. A., Nakagawa T., Swanson M. S., Woodruff T. K., Dreyfuss G. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol. 1986 Aug;6(8):2932–2943. doi: 10.1128/mcb.6.8.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alton T. H., Lodish H. F. Translational control of protein synthesis during the early stages of differentiation of the slime mold Dictyostelium discoideum. Cell. 1977 Sep;12(1):301–310. doi: 10.1016/0092-8674(77)90208-2. [DOI] [PubMed] [Google Scholar]
- Cardelli J. A., Dimond R. L. Regulation of protein synthesis in Dictyostelium discoideum: effects of starvation and anoxia on initiation. Biochemistry. 1981 Dec 22;20(26):7391–7398. doi: 10.1021/bi00529a011. [DOI] [PubMed] [Google Scholar]
- Cardelli J. A., Knecht D. A., Dimond R. L. Membrane-bound and free polysomes in Dictyostelium discoideum. I. Isolation and developmental effects on size and distribution. Dev Biol. 1981 Feb;82(1):180–185. doi: 10.1016/0012-1606(81)90440-1. [DOI] [PubMed] [Google Scholar]
- Craig E. A. The heat shock response. CRC Crit Rev Biochem. 1985;18(3):239–280. doi: 10.3109/10409238509085135. [DOI] [PubMed] [Google Scholar]
- Deshpande A. K., Chatterjee B., Roy A. K. Translation and stability of rat liver messenger RNA for alpha 2 mu-globulin in Xenopus oocyte. The role of terminal poly(A). J Biol Chem. 1979 Sep 25;254(18):8937–8942. [PubMed] [Google Scholar]
- Doel M. T., Carey N. H. The translational capacity of deadenylated ovalbumin messenger RNA. Cell. 1976 May;8(1):51–58. doi: 10.1016/0092-8674(76)90184-7. [DOI] [PubMed] [Google Scholar]
- Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
- Hickey E. D., Weber L. A. Modulation of heat-shock polypeptide synthesis in HeLa cells during hyperthermia and recovery. Biochemistry. 1982 Mar 30;21(7):1513–1521. doi: 10.1021/bi00536a008. [DOI] [PubMed] [Google Scholar]
- Hruby D. E., Roberts W. K. Encephalomyocarditis virus RNA. II. Polyadenylic acid requirement for efficient translation. J Virol. 1977 Aug;23(2):338–344. doi: 10.1128/jvi.23.2.338-344.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hultmark D., Klemenz R., Gehring W. J. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell. 1986 Feb 14;44(3):429–438. doi: 10.1016/0092-8674(86)90464-2. [DOI] [PubMed] [Google Scholar]
- Hunt C., Morimoto R. I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6455–6459. doi: 10.1073/pnas.82.19.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingolia T. D., Slater M. R., Craig E. A. Saccharomyces cerevisiae contains a complex multigene family related to the major heat shock-inducible gene of Drosophila. Mol Cell Biol. 1982 Nov;2(11):1388–1398. doi: 10.1128/mcb.2.11.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson A., Favreau M. Possible involvement of poly(A) in protein synthesis. Nucleic Acids Res. 1983 Sep 24;11(18):6353–6368. doi: 10.1093/nar/11.18.6353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley P. M., Schlesinger M. J. Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Mol Cell Biol. 1982 Mar;2(3):267–274. doi: 10.1128/mcb.2.3.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kioussis J., Cato A. C., Slater A., Burdon R. H. Polypeptides encoded by polyadenylated and non-polyadenylated messenger RNAs from normal and heat shocked HeLa cells. Nucleic Acids Res. 1981 Oct 24;9(20):5203–5214. doi: 10.1093/nar/9.20.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Loomis W. F., Wheeler S. A. Chromatin-associated heat shock proteins of Dictyostelium. Dev Biol. 1982 Apr;90(2):412–418. doi: 10.1016/0012-1606(82)90390-6. [DOI] [PubMed] [Google Scholar]
- Loomis W. F., Wheeler S. Heat shock response of Dictyostelium. Dev Biol. 1980 Oct;79(2):399–408. doi: 10.1016/0012-1606(80)90125-6. [DOI] [PubMed] [Google Scholar]
- Manrow R. E., Jacobson A. Identification and characterization of developmentally regulated mRNP proteins of Dictyostelium discoideum. Dev Biol. 1986 Jul;116(1):213–227. doi: 10.1016/0012-1606(86)90058-8. [DOI] [PubMed] [Google Scholar]
- McCormick W., Penman S. Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol. 1969 Jan;39(2):315–333. doi: 10.1016/0022-2836(69)90320-9. [DOI] [PubMed] [Google Scholar]
- McGarry T. J., Lindquist S. The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell. 1985 Oct;42(3):903–911. doi: 10.1016/0092-8674(85)90286-7. [DOI] [PubMed] [Google Scholar]
- Mirault M. E., Goldschmidt-Clermont M., Moran L., Arrigo A. P., Tissières A. The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):819–827. doi: 10.1101/sqb.1978.042.01.082. [DOI] [PubMed] [Google Scholar]
- Palatnik C. M., Wilkins C., Jacobson A. Translational control during early Dictyostelium development: possible involvement of poly(A) sequences. Cell. 1984 Apr;36(4):1017–1025. doi: 10.1016/0092-8674(84)90051-5. [DOI] [PubMed] [Google Scholar]
- Sachs A. B., Bond M. W., Kornberg R. D. A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell. 1986 Jun 20;45(6):827–835. doi: 10.1016/0092-8674(86)90557-x. [DOI] [PubMed] [Google Scholar]
- Schönfelder M., Horsch A., Schmid H. P. Heat shock increases the synthesis of the poly(A)-binding protein in HeLa cells. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6884–6888. doi: 10.1073/pnas.82.20.6884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A., Pardue M. L., Penman S. Messenger RNA in heat-shocked Drosophila cells. J Mol Biol. 1977 Feb 5;109(4):559–587. doi: 10.1016/s0022-2836(77)80091-0. [DOI] [PubMed] [Google Scholar]
- Storti R. V., Scott M. P., Rich A., Pardue M. L. Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell. 1980 Dec;22(3):825–834. doi: 10.1016/0092-8674(80)90559-0. [DOI] [PubMed] [Google Scholar]