Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Apr;84(7):2012–2014. doi: 10.1073/pnas.84.7.2012

Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves.

T Sakaguchi, G A Bray
PMCID: PMC304573  PMID: 3550804

Abstract

Injection of picomolar quantities of insulin into the ventromedial hypothalamus of rats significantly reduced the firing rate of sympathetic nerves that supply interscapular brown adipose tissue. The minimal firing rate was reached in 2 min, and the effect was gone within 4 min. The effect of insulin was dose-related and did not occur when comparable volumes of physiological saline were injected into the ventromedial hypothalamus. Destruction of neurons in the ventromedial hypothalamus by injection of kainic acid abolished the inhibitory effects of insulin. These data suggest that insulin may play a role in modulating the sympathetic firing rate to thermogenically important tissues.

Full text

PDF
2012

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. K., Hazelwood R. L. Chicken cerebrospinal fluid: normal composition and response to insulin administration. J Physiol. 1969 May;202(1):83–95. doi: 10.1113/jphysiol.1969.sp008796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bray G. A., York D. A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev. 1979 Jul;59(3):719–809. doi: 10.1152/physrev.1979.59.3.719. [DOI] [PubMed] [Google Scholar]
  3. Brief D. J., Davis J. D. Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res Bull. 1984 May;12(5):571–575. doi: 10.1016/0361-9230(84)90174-6. [DOI] [PubMed] [Google Scholar]
  4. Coyle J. T., Molliver M. E., Kuhar M. J. In situ injection of kainic acid: a new method for selectively lesioning neural cell bodies while sparing axons of passage. J Comp Neurol. 1978 Jul 15;180(2):301–323. doi: 10.1002/cne.901800208. [DOI] [PubMed] [Google Scholar]
  5. Creese R. Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins. J Physiol. 1968 Jul;197(2):255–278. doi: 10.1113/jphysiol.1968.sp008558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Debons A. F., Krimsky I., From A. A direct action of insulin on the hypothalamic satiety center. Am J Physiol. 1970 Oct;219(4):938–943. doi: 10.1152/ajplegacy.1970.219.4.938. [DOI] [PubMed] [Google Scholar]
  7. Flaim K. E., Horwitz B. A., Horowitz J. M. Coupling of signals to brown fat: alpha- and beta-adrenergic responses in intact rats. Am J Physiol. 1977 Mar;232(3):R101–R109. doi: 10.1152/ajpregu.1977.232.3.R101. [DOI] [PubMed] [Google Scholar]
  8. Havrankova J., Roth J., Brownstein M. J. Insulin receptors in brain. Adv Metab Disord. 1983;10:259–268. doi: 10.1016/b978-0-12-027310-2.50014-1. [DOI] [PubMed] [Google Scholar]
  9. Inoue S., Mullen Y. S., Bray G. A. Hyperinsulinemia in rats with hypothalamic obesity: effects of autonomic drugs and glucose. Am J Physiol. 1983 Sep;245(3):R372–R378. doi: 10.1152/ajpregu.1983.245.3.R372. [DOI] [PubMed] [Google Scholar]
  10. Kaneto A., Miki E., Kosaka K. Effects of vagal stimulation on glucagon and insulin secretion. Endocrinology. 1974 Oct;95(4):1005–1010. doi: 10.1210/endo-95-4-1005. [DOI] [PubMed] [Google Scholar]
  11. Kumon A., Takahashi A., Hara T., Shimazu T. Mechanism of lipolysis induced by electrical stimulation of the hypothalamus in the rabbit. J Lipid Res. 1976 Nov;17(6):551–558. [PubMed] [Google Scholar]
  12. Miller R. E. Neural inhibition of insulin secretion from the isolated canine pancreas. Am J Physiol. 1975 Jul;229(1):144–149. doi: 10.1152/ajplegacy.1975.229.1.144. [DOI] [PubMed] [Google Scholar]
  13. Niijima A., Rohner-Jeanrenaud F., Jeanrenaud B. Role of ventromedial hypothalamus on sympathetic efferents of brown adipose tissue. Am J Physiol. 1984 Oct;247(4 Pt 2):R650–R654. doi: 10.1152/ajpregu.1984.247.4.R650. [DOI] [PubMed] [Google Scholar]
  14. Oomura Y., Kita H. Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia. 1981 Mar;20 (Suppl):290–298. [PubMed] [Google Scholar]
  15. Oomura Y., Ono T., Ooyama H., Wayner M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature. 1969 Apr 19;222(5190):282–284. doi: 10.1038/222282a0. [DOI] [PubMed] [Google Scholar]
  16. Perkins M. N., Rothwell N. J., Stock M. J., Stone T. W. Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature. 1981 Jan 29;289(5796):401–402. doi: 10.1038/289401a0. [DOI] [PubMed] [Google Scholar]
  17. Porte D., Jr, Girardier L., Seydoux J., Kanazawa Y., Posternak J. Neural regulation of insulin secretion in the dog. J Clin Invest. 1973 Jan;52(1):210–214. doi: 10.1172/JCI107168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sakaguchi T., Shimojo E. Inhibition of gastric motility induced by hepatic portal injections of D-glucose and its anomers. J Physiol. 1984 Jun;351:573–581. doi: 10.1113/jphysiol.1984.sp015263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shimazu T., Takahashi A. Stimulation of hypothalamic nuclei has differential effects on lipid synthesis in brown and white adipose tissue. Nature. 1980 Mar 6;284(5751):62–63. doi: 10.1038/284062a0. [DOI] [PubMed] [Google Scholar]
  20. Storlien L. H., Bellingham W. P., Martin G. M. Localization of CNS glucoregulatory insulin receptors within the ventromedial hypothalamus. Brain Res. 1975 Oct 10;96(1):156–160. doi: 10.1016/0006-8993(75)90590-9. [DOI] [PubMed] [Google Scholar]
  21. Szabo A. J., Iguchi A., Burleson P. D., Szabo O. Vagotomy or atropine blocks hypoglycemic effect of insulin injected into ventromedial hypothalamic nucleus. Am J Physiol. 1983 May;244(5):E467–E471. doi: 10.1152/ajpendo.1983.244.5.E467. [DOI] [PubMed] [Google Scholar]
  22. Szabo O., Szabo A. J. Studies on the nature and mode of action of the insulin-sensitive glucoregulator receptor in the central nervous system. Diabetes. 1975 Apr;24(4):328–336. doi: 10.2337/diab.24.4.328. [DOI] [PubMed] [Google Scholar]
  23. Uvnäs-Wallensten K., Nilsson G. A quantitative study of the insulin release induced by vagal stimulation in anesthetized cats. Acta Physiol Scand. 1978 Feb;102(2):137–142. doi: 10.1111/j.1748-1716.1978.tb06056.x. [DOI] [PubMed] [Google Scholar]
  24. Van Houten M., Posner B. I. Circumventricular organs: receptors and mediators of direct peptide hormone action on brain. Adv Metab Disord. 1983;10:269–289. doi: 10.1016/b978-0-12-027310-2.50015-3. [DOI] [PubMed] [Google Scholar]
  25. Woods S. C., Lotter E. C., McKay L. D., Porte D., Jr Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979 Nov 29;282(5738):503–505. doi: 10.1038/282503a0. [DOI] [PubMed] [Google Scholar]
  26. Zierler K. L. Possible mechanisms of insulin action on membrane potential and ion fluxes. Am J Med. 1966 May;40(5):735–739. doi: 10.1016/0002-9343(66)90154-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES