Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Apr;84(7):2078–2081. doi: 10.1073/pnas.84.7.2078

Specific binding of atrial natriuretic factor in brain microvessels.

P E Chabrier, P Roubert, P Braquet
PMCID: PMC304588  PMID: 2882516

Abstract

Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. We examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using 125I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity (dissociation constant, approximately 10(-10) M) and with a binding capacity of 58 fmol/mg of protein. The binding of 125I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function.

Full text

PDF
2078

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz A. L., Firth J. A., Goldstein G. W. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980 Jun 16;192(1):17–28. doi: 10.1016/0006-8993(80)91004-5. [DOI] [PubMed] [Google Scholar]
  2. Bowers G. N., Jr, McComb R. B. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem. 1966 Feb;12(2):70–89. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cantin M., Genest J. The heart and the atrial natriuretic factor. Endocr Rev. 1985 Spring;6(2):107–127. doi: 10.1210/edrv-6-2-107. [DOI] [PubMed] [Google Scholar]
  5. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  6. Garcia J. H., Ben-David E., Conger K. A., Geer J. C., Hollander W. Arterial hypertension injures brain capillaries. Definition of the lesions. Possible pathogenesis. Stroke. 1981 Jul-Aug;12(4):410–413. doi: 10.1161/01.str.12.4.410. [DOI] [PubMed] [Google Scholar]
  7. Goldstein G. W., Wolinsky J. S., Csejtey J., Diamond I. Isolation of metabolically active capillaries from rat brain. J Neurochem. 1975 Nov;25(5):715–717. doi: 10.1111/j.1471-4159.1975.tb04395.x. [DOI] [PubMed] [Google Scholar]
  8. Hirata Y., Tomita M., Takada S., Yoshimi H. Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down-regulation by ANP. Biochem Biophys Res Commun. 1985 Apr 30;128(2):538–546. doi: 10.1016/0006-291x(85)90080-4. [DOI] [PubMed] [Google Scholar]
  9. Johansson B. B., Linder L. E. Reversibility of the blood-brain barrier dysfunction induced by acute hypertension. Acta Neurol Scand. 1978 Apr;57(4):345–348. doi: 10.1111/j.1600-0404.1978.tb04508.x. [DOI] [PubMed] [Google Scholar]
  10. Johansson B. Brain barrier pathology in acute arterial hypertension. Adv Exp Med Biol. 1976;69:517–527. doi: 10.1007/978-1-4684-3264-0_38. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi H., Magnoni M. S., Govoni S., Izumi F., Wada A., Trabucchi M. Neuronal control of brain microvessel function. Experientia. 1985 Apr 15;41(4):427–434. doi: 10.1007/BF01966140. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi H., Wada A., Izumi F., Magnoni M. S., Trabucchi M. alpha-Adrenergic receptors in cerebral microvessels of normotensive and spontaneously hypertensive rats. Circ Res. 1985 Mar;56(3):402–409. doi: 10.1161/01.res.56.3.402. [DOI] [PubMed] [Google Scholar]
  13. Maack T., Camargo M. J., Kleinert H. D., Laragh J. H., Atlas S. A. Atrial natriuretic factor: structure and functional properties. Kidney Int. 1985 Apr;27(4):607–615. doi: 10.1038/ki.1985.54. [DOI] [PubMed] [Google Scholar]
  14. Maki M., Takayanagi R., Misono K. S., Pandey K. N., Tibbetts C., Inagami T. Structure of rat atrial natriuretic factor precursor deduced from cDNA sequence. Nature. 1984 Jun 21;309(5970):722–724. doi: 10.1038/309722a0. [DOI] [PubMed] [Google Scholar]
  15. Naftalin L., Sexton M., Whitaker J. F., Tracey D. A routine procedure for estimating serum gamma-glutamyltranspeptidase activity. Clin Chim Acta. 1969 Nov;26(2):293–296. doi: 10.1016/0009-8981(69)90381-7. [DOI] [PubMed] [Google Scholar]
  16. Napier M. A., Vandlen R. L., Albers-Schönberg G., Nutt R. F., Brady S., Lyle T., Winquist R., Faison E. P., Heinel L. A., Blaine E. H. Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5946–5950. doi: 10.1073/pnas.81.19.5946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Onoyama K., Omae T. Leakage of serum proteins in brain tissues in experimentally induced renal hypertension. Acta Neurol Scand. 1973;49(3):339–344. doi: 10.1111/j.1600-0404.1973.tb01307.x. [DOI] [PubMed] [Google Scholar]
  18. Saavedra J. M., Correa F. M., Plunkett L. M., Israel A., Kurihara M., Shigematsu K. Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Nature. 1986 Apr 24;320(6064):758–760. doi: 10.1038/320758a0. [DOI] [PubMed] [Google Scholar]
  19. Saavedra J. M., Israel A., Kurihara M., Fuchs E. Decreased number and affinity of rat atrial natriuretic peptide (6-33) binding sites in the subfornical organ of spontaneously hypertensive rats. Circ Res. 1986 Mar;58(3):389–392. doi: 10.1161/01.res.58.3.389. [DOI] [PubMed] [Google Scholar]
  20. Schenk D. B., Johnson L. K., Schwartz K., Sista H., Scarborough R. M., Lewicki J. A. Distinct atrial natriuretic factor receptor sites on cultured bovine aortic smooth muscle and endothelial cells. Biochem Biophys Res Commun. 1985 Mar 15;127(2):433–442. doi: 10.1016/s0006-291x(85)80179-0. [DOI] [PubMed] [Google Scholar]
  21. Schiffrin E. L., Chartier L., Thibault G., St-Louis J., Cantin M., Genest J. Vascular and adrenal receptors for atrial natriuretic factor in the rat. Circ Res. 1985 Jun;56(6):801–807. doi: 10.1161/01.res.56.6.801. [DOI] [PubMed] [Google Scholar]
  22. Speth R. C., Harik S. I. Angiotensin II receptor binding sites in brain microvessels. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6340–6343. doi: 10.1073/pnas.82.18.6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Winquist R. J., Napier M. A., Vandlen R. L., Arcuri K., Keegan M. E., Faison E. P., Baskin E. P. Pharmacology and receptor binding of atrial natriuretic factor in vascular smooth muscle. Clin Exp Hypertens A. 1985;7(5-6):869–886. doi: 10.3109/10641968509077234. [DOI] [PubMed] [Google Scholar]
  24. Yamanaka M., Greenberg B., Johnson L., Seilhamer J., Brewer M., Friedemann T., Miller J., Atlas S., Laragh J., Lewicki J. Cloning and sequence analysis of the cDNA for the rat atrial natriuretic factor precursor. Nature. 1984 Jun 21;309(5970):719–722. doi: 10.1038/309719a0. [DOI] [PubMed] [Google Scholar]
  25. Zivin R. A., Condra J. H., Dixon R. A., Seidah N. G., Chrétien M., Nemer M., Chamberland M., Drouin J. Molecular cloning and characterization of DNA sequences encoding rat and human atrial natriuretic factors. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6325–6329. doi: 10.1073/pnas.81.20.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES