Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Apr;84(8):2155–2159. doi: 10.1073/pnas.84.8.2155

Geometry of the antitumor drug ditercalinium bisintercalated into d(CpGpCpG)2 by 1H NMR.

A Delbarre, M Delepierre, C Garbay, J Igolen, J B Le Pecq, B P Roques
PMCID: PMC304607  PMID: 3470783

Abstract

Rigid 7H-pyrido[4,3-c]carbazole dimers, such as Ditercalinium, are DNA bisintercalators that display high DNA affinity and strong antitumor properties. This activity appears crucially dependent on the geometry of their complexes with DNA. Therefore, structures of the complexes formed by the self-complementary tetranucleotide d(CpGpCpG) with Ditercalinium and with a related monomer were investigated in 0.1 M [2H]acetate buffer (pH 5.5) by using 400-MHz 1H NMR. In both cases, d(CpGpCpG) retained a right-handed duplex structure as shown by exchangeable-proton analysis and intramolecular nuclear Overhauser effect measurements. According to the large upfield shifts measured on the base protons (including the imino proton) and on the aromatic protons of the pyridocarbazole rings, the monomer appears to monointercalate and the dimer to bisintercalate into the tetranucleotide duplex. Ditercalinium dissociates from its complex about 100-1000 times slower than does the monomer. The negative intermolecular nuclear Overhauser effects observed on protons corresponding to the convex edge of the pyridocarbazole rings when the sugar protons are saturated suggest that both ligands intercalate with their chain oriented to the wide groove side of the helix, a situation mimicking that encountered with repressors. Antitumor activity of 7H-pyridocarbazole derivatives is discussed in terms of geometry of the intercalated complexes.

Full text

PDF
2155

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assa-Munt N., Leupin W., Denny W. A., Kearns D. R. 1H NMR study of the binding of bis(acridines) to d(AT)5.d(AT)5. 2. Dynamic aspects. Biochemistry. 1985 Mar 12;24(6):1449–1460. doi: 10.1021/bi00327a025. [DOI] [PubMed] [Google Scholar]
  2. Brown S. C., Mullis K., Levenson C., Shafer R. H. Aqueous solution structure of an intercalated actinomycin D-dATGCAT complex by two-dimensional and one-dimensional proton NMR. Biochemistry. 1984 Jan 31;23(3):403–408. doi: 10.1021/bi00298a003. [DOI] [PubMed] [Google Scholar]
  3. Cavailles J. A., Neumann J. M., Taboury J., Langlois d'Estaintot B., Huynh-Dinh T., Igolen J., Tran-Dinh S. B,Z conformations and mechanism of the Z-B-coil transitions of the self-complementary deoxy-hexanucleotide d(C-G-m5C-G-C-G) by 1H-NMR and CD spectroscopy. J Biomol Struct Dyn. 1984 Jun;1(6):1347–1371. doi: 10.1080/07391102.1984.10507525. [DOI] [PubMed] [Google Scholar]
  4. Delbarre A., Gourevitch M. I., Gaugain B., Le Pecq J. B., Roques B. P. 1H NMR study of an ethidium dimer poly(dA-dT) complex: evidence of a transition between bis and monointercalation. Nucleic Acids Res. 1983 Jul 11;11(13):4467–4482. doi: 10.1093/nar/11.13.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delbarre A., Shafer R. H., James T. L. 19F-NMR study of DNA bis-intercalation. Biopolymers. 1983 Dec;22(12):2497–2500. doi: 10.1002/bip.360221202. [DOI] [PubMed] [Google Scholar]
  6. Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
  7. Esnault C., Roques B. P., Jacquemin-Sablon A., Le Pecq J. B. Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L 1210 cells. Cancer Res. 1984 Oct;44(10):4355–4360. [PubMed] [Google Scholar]
  8. Feigon J., Denny W. A., Leupin W., Kearns D. R. Interactions of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J Med Chem. 1984 Apr;27(4):450–465. doi: 10.1021/jm00370a007. [DOI] [PubMed] [Google Scholar]
  9. Fox K. R., Waring M. J. Kinetic evidence that echinomycin migrates between potential DNA binding sites. Nucleic Acids Res. 1985 Jan 25;13(2):595–603. doi: 10.1093/nar/13.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaugain B., Markovits J., Le Pecq J. B., Roques B. P. Hydrogen bonding in deoxyribonucleic acid base recognition. 1. Proton nuclear magnetic resonance studies of dinucleotide-acridine alkylamide complexes. Biochemistry. 1981 May 26;20(11):3035–3042. doi: 10.1021/bi00514a008. [DOI] [PubMed] [Google Scholar]
  11. Giessner-Prettre C., Pullman B. On the atomic or "local" contributions to proton chemical shifts due to the anisotropy of the diamagnetic susceptibility of the nucleic acid base. Biochem Biophys Res Commun. 1976 May 17;70(2):578–581. doi: 10.1016/0006-291x(76)91086-x. [DOI] [PubMed] [Google Scholar]
  12. Hilbers C. W., Heerschap A., Haasnoot C. A., Walters J. A. The solution structure of yeast tRNAPhe as studied by nuclear Overhauser effects in NMR. J Biomol Struct Dyn. 1983 Oct;1(1):183–207. doi: 10.1080/07391102.1983.10507434. [DOI] [PubMed] [Google Scholar]
  13. Jain S. C., Bhandary K. K., Sobell H. M. Visualization of drug--nucleic acid interactions at atomic resolution. VI. Structure of two drug--dinucleoside monophosphate crystalline complexes, ellipticine--5-iodocytidylyy (3'-5') guanosine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium--5-iodocytidylyl (3'-5') guanosine. J Mol Biol. 1979 Dec 25;135(4):813–840. [PubMed] [Google Scholar]
  14. Jain S. C., Tsai C. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. II. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodocytidylyl (3'-5') guanosine. J Mol Biol. 1977 Aug 15;114(3):317–331. doi: 10.1016/0022-2836(77)90253-4. [DOI] [PubMed] [Google Scholar]
  15. Kastrup R. V., Young M. A., Krugh T. R. Ethidium bromide complexes with self-complementary deoxytetranucleotides. Demonstration and discussion of sequence preferences in the intercalative binding of ethidium bromide. Biochemistry. 1978 Nov 14;17(23):4855–4865. doi: 10.1021/bi00616a002. [DOI] [PubMed] [Google Scholar]
  16. Krugh T. R., Reinhardt C. G. Evidence for sequence preferences in the intercalative binding of ethidium bromide to dinucleoside monophosphates. J Mol Biol. 1975 Sep 15;97(2):133–162. doi: 10.1016/s0022-2836(75)80031-3. [DOI] [PubMed] [Google Scholar]
  17. Lancelot G., Asseline U., Thuong N. T., Hélène C. Proton and phosphorus nuclear magnetic resonance studies of an oligothymidylate covalently linked to an acridine derivative and of its binding to complementary sequences. Biochemistry. 1985 May 7;24(10):2521–2529. doi: 10.1021/bi00331a019. [DOI] [PubMed] [Google Scholar]
  18. Patel D. J. Antibiotic-DNA interactions: intermolecular nuclear Overhauser effects in the netropsin-d(C-G-C-G-A-A-T-T-C-G-C-G) complex in solution. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6424–6428. doi: 10.1073/pnas.79.21.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pelaprat D., Delbarre A., Le Guen I., Roques B. P., Le Pecq J. B. DNA intercalating compounds as potential antitumor agents. 2. Preparation and properties of 7H-pyridocarbazole dimers. J Med Chem. 1980 Dec;23(12):1336–1343. doi: 10.1021/jm00186a010. [DOI] [PubMed] [Google Scholar]
  20. Quigley G. J., Wang A. H., Ughetto G., van der Marel G., van Boom J. H., Rich A. Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci U S A. 1980 Dec;77(12):7204–7208. doi: 10.1073/pnas.77.12.7204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reid D. G., Salisbury S. A., Bellard S., Shakked Z., Williams D. H. Proton nuclear Overhauser effect study of the structure of a deoxyoligonucleotide duplex in aqueous solution. Biochemistry. 1983 Apr 12;22(8):2019–2025. doi: 10.1021/bi00277a044. [DOI] [PubMed] [Google Scholar]
  22. Reid D. G., Salisbury S. A., Williams D. H. Proton nuclear overhauser effect study of the structure of an actinomycin D complex with a self-complementary tetranucleoside triphosphate. Biochemistry. 1983 Mar 15;22(6):1377–1385. doi: 10.1021/bi00275a009. [DOI] [PubMed] [Google Scholar]
  23. Roques B. P., Pelaprat D., Le Guen I., Porcher G., Gosse C., Le Pecq J. B. DNA bifunctional intercalators: antileukemic activity of new pyridocarbazole dimers. Biochem Pharmacol. 1979 Jun 1;28(11):1811–1815. doi: 10.1016/0006-2952(79)90547-1. [DOI] [PubMed] [Google Scholar]
  24. Schevitz R. W., Otwinowski Z., Joachimiak A., Lawson C. L., Sigler P. B. The three-dimensional structure of trp repressor. 1985 Oct 31-Nov 6Nature. 317(6040):782–786. doi: 10.1038/317782a0. [DOI] [PubMed] [Google Scholar]
  25. Tran-Dinh S., Cavaillès J. A., Hervé M., Neumann J. M., Garnier A., Huynh-Dinh T., Langlois d'Estaintot B., Igolen J. 1H-NMR study of the interaction of daunomycin with B-DNA helices of methylated oligodeoxynucleotides. Nucleic Acids Res. 1984 Aug 10;12(15):6259–6276. doi: 10.1093/nar/12.15.6259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ughetto G., Wang A. H., Quigley G. J., van der Marel G. A., van Boom J. H., Rich A. A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment. Nucleic Acids Res. 1985 Apr 11;13(7):2305–2323. doi: 10.1093/nar/13.7.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Westerink H. P., van der Marel G. A., van Boom J. H., Haasnoot C. A. Conformational analysis of r(CGCGCG) in aqueous solution: an A-type double helical conformation studied by two-dimensional nuclear Overhauser effect spectroscopy. Nucleic Acids Res. 1984 May 25;12(10):4323–4338. doi: 10.1093/nar/12.10.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson W. D., Jones R. L. Interaction of actinomycin D, ethidium, quinacrine, daunorubicin, and tetralysine with DNA: 31P NMR chemical shift and relaxation investigation. Nucleic Acids Res. 1982 Feb 25;10(4):1399–1410. doi: 10.1093/nar/10.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Young P. R., Kallenbach N. R. Site exclusion and sequence specificity in binding of 9-aminoacridine to the deoxytetranucleotide dpApGpCpT. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6453–6457. doi: 10.1073/pnas.77.11.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES