Abstract
In hepatocytes stimulated with 8-bromo-cAMP, insulin decreases the affinity of the cAMP-dependent protein kinase for cAMP, shifting the Ka without affecting the Vmax activity. This occurs under conditions where cyclic adenine nucleotide concentrations are unchanged. We report here that glycogenolysis stimulated by 8-(4-chlorophenylthio)-cAMP, an analog with 100 times tighter affinity than cAMP for the protein kinase regulatory subunit, was only slightly antagonized by insulin. The tight binding of this analog appears to overcome the protein kinase affinity change induced by insulin. The relative importance of the two intrachain cAMP binding sites of the cAMP-dependent protein kinase regulatory subunit was investigated by using analogs with relative selectivity for each site. Analogs exhibiting preferential binding to site 2 were far less sensitive to insulin antagonism than were analogs binding preferentially at site 1 and less well at site 2. No other property of these analogs, including the rate of hydrolysis by phosphodiesterase, the IC50 for phosphodiesterase, the Ka for protein kinase, or the type I versus type II kinase specificity, could account for the ability of insulin to antagonize glycogenolysis stimulated by these analogs. These data indicate that insulin may act to decrease the affinity of protein kinases for cAMP through a possible regulation of intrachain site 2 binding.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beebe S. J., Holloway R., Rannels S. R., Corbin J. D. Two classes of cAMP analogs which are selective for the two different cAMP-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J Biol Chem. 1984 Mar 25;259(6):3539–3547. [PubMed] [Google Scholar]
- Beebe S. J., Redmon J. B., Blackmore P. F., Corbin J. D. Discriminative insulin antagonism of stimulatory effects of various cAMP analogs on adipocyte lipolysis and hepatocyte glycogenolysis. J Biol Chem. 1985 Dec 15;260(29):15781–15788. [PubMed] [Google Scholar]
- Cherrington A. D., Assimacopoulos F. D., Harper S. C., Corbin J. D., Park C. R., Exton J. H. Studies on the alpha-andrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes. J Biol Chem. 1976 Sep 10;251(17):5209–5218. [PubMed] [Google Scholar]
- Corbin J. D., Rannels S. R., Flockhart D. A., Robinson-Steiner A. M., Tigani M. C., Døskeland S. O., Suva R. H., Suva R., Miller J. P. Effect of cyclic nucleotide analogs on intrachain site I of protein kinase isozymes. Eur J Biochem. 1982 Jul;125(2):259–266. doi: 10.1111/j.1432-1033.1982.tb06677.x. [DOI] [PubMed] [Google Scholar]
- Døskeland S. O., Ogreid D., Ekanger R., Sturm P. A., Miller J. P., Suva R. H. Mapping of the two intrachain cyclic nucleotide binding sites of adenosine cyclic 3',5'-phosphate dependent protein kinase I. Biochemistry. 1983 Mar 1;22(5):1094–1101. doi: 10.1021/bi00274a016. [DOI] [PubMed] [Google Scholar]
- Gabbay R. A., Lardy H. A. Site of insulin inhibition of cAMP-stimulated glycogenolysis. J Biol Chem. 1984 May 25;259(10):6052–6055. [PubMed] [Google Scholar]
- Gabbay R. A., Lardy H. A. The antilipolytic effect of insulin does not require adenylate cyclase or phosphodiesterase action. FEBS Lett. 1985 Jan 1;179(1):7–11. doi: 10.1016/0014-5793(85)80179-4. [DOI] [PubMed] [Google Scholar]
- Hofmann F., Beavo J. A., Bechtel P. J., Krebs E. G. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem. 1975 Oct 10;250(19):7795–7801. [PubMed] [Google Scholar]
- Keely S. L., Corbin J. D., Park C. R. Regulation of adenosine 3:5-monophosphate-dependent protein kinase. J Biol Chem. 1975 Jul 10;250(13):4832–4840. [PubMed] [Google Scholar]
- Liu A. Y., Walter U., Greengard P. Steroid hormones may regulate autophosphorylation of adenosine-3',5'-monophosphate-dependent protein kinase in target tissues. Eur J Biochem. 1981 Mar;114(3):539–548. doi: 10.1111/j.1432-1033.1981.tb05178.x. [DOI] [PubMed] [Google Scholar]
- Loten E. G., Assimacopoulos-Jeannet F. D., Exton J. H., Park C. R. Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J Biol Chem. 1978 Feb 10;253(3):746–757. [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature. 1980 Aug 28;286(5776):904–906. doi: 10.1038/286904a0. [DOI] [PubMed] [Google Scholar]
- Miller J. P., Beck A. H., Simon L. N., Meyer R. B., Jr Induction of hepatic tyrosine aminotransferase in vivo by derivatives of cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1975 Jan 25;250(2):426–431. [PubMed] [Google Scholar]
- Miller J. P., Boswell K. H., Meyer R. B., Jr, Christensen L. F., Robins R. K. Synthesis and enzymatic and inotropic activity of some new 8-substituted and 6,8-disubstituted derivatives of adenosine cyclic 3',5'-monophosphate. J Med Chem. 1980 Mar;23(3):242–251. doi: 10.1021/jm00177a007. [DOI] [PubMed] [Google Scholar]
- Miller J. P. Cyclic AMP derivatives as tools for mapping cyclic AMP binding sites of cyclic AMP-dependent protein kinases I and II. Adv Cyclic Nucleotide Res. 1981;14:335–344. [PubMed] [Google Scholar]
- Miller T. B., Jr, Larner J. Mechanism of control of hepatic glycogenesis by insulin. J Biol Chem. 1973 May 25;248(10):3483–3488. [PubMed] [Google Scholar]
- Mor M. A., Vila J., Ciudad C. J., Guinovart J. J. Insulin inactivation of rat hepatocyte cyclic AMP-dependent protein kinase. FEBS Lett. 1981 Dec 21;136(1):131–134. doi: 10.1016/0014-5793(81)81230-6. [DOI] [PubMed] [Google Scholar]
- Ogreid D., Døskeland S. O., Miller J. P. Evidence that cyclic nucleotides activating rabbit muscle protein kinase I interact with both types of cAMP binding sites associated with the enzyme. J Biol Chem. 1983 Jan 25;258(2):1041–1049. [PubMed] [Google Scholar]
- Palmer W. K., McPherson J. M., Walsh D. A. Critical controls in the evaluation of cAMP-dependent protein kinase activity ratios as indices of hormonal action. J Biol Chem. 1980 Apr 10;255(7):2663–2666. [PubMed] [Google Scholar]
- Pilkis S. J., Claus T. H., Johnson R. A., Park C. R. Hormonal control of cyclic 3':5'-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem. 1975 Aug 25;250(16):6328–6336. [PubMed] [Google Scholar]
- Pittner R. A., Fears R., Brindley D. N. Effects of cyclic AMP, glucocorticoids and insulin on the activities of phosphatidate phosphohydrolase, tyrosine aminotransferase and glycerol kinase in isolated rat hepatocytes in relation to the control of triacylglycerol synthesis and gluconeogenesis. Biochem J. 1985 Jan 15;225(2):455–462. doi: 10.1042/bj2250455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rangel-Aldao R., Rosen O. M. Dissociation and reassociation of the phosphorylated and nonphosphorylated forms of adenosine 3':5' -monophosphate-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1976 Jun 10;251(11):3375–3380. [PubMed] [Google Scholar]
- Rangel-Aldao R., Rosen O. M. Effect of cAMP and ATP on the reassociation of phosphorylated and nonphosphorylated subunits of the cAMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1977 Oct 25;252(20):7140–7145. [PubMed] [Google Scholar]
- Rannels S. R., Corbin J. D. Studies on the function of the two intrachain cAMP binding sites of protein kinase. J Biol Chem. 1981 Aug 10;256(15):7871–7876. [PubMed] [Google Scholar]
- Rannels S. R., Corbin J. D. Two different intrachain cAMP binding sites of cAMP-dependent protein kinases. J Biol Chem. 1980 Aug 10;255(15):7085–7088. [PubMed] [Google Scholar]
- Robinson-Steiner A. M., Corbin J. D. Probable involvement of both intrachain cAMP binding sites in activation of protein kinase. J Biol Chem. 1983 Jan 25;258(2):1032–1040. [PubMed] [Google Scholar]
- Robinson-Steiner A. M., Corbin J. D. Stimulation of [3H]cIMP binding by cAMP analogs in extracts of perfused rat hearts. J Biol Chem. 1982 May 25;257(10):5482–5489. [PubMed] [Google Scholar]
- Rosen O. M., Erlichman J. Reversible autophosphorylation of a cyclic 3':5'-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1975 Oct 10;250(19):7788–7794. [PubMed] [Google Scholar]
- Scott C. W., Mumby M. C. Phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase in intact smooth muscle. J Biol Chem. 1985 Feb 25;260(4):2274–2280. [PubMed] [Google Scholar]
- Uno H., Meyer R. B., Shuman D. A., Robins R. K., Simon L. N., Miller J. P. Synthesis of some 1, 8- and 2, 8-disubstituted derivatives of adenosine cyclic 3', 5'-phosphate and their interaction with some enzymes of cAMP metabolism. J Med Chem. 1976 Mar;19(3):419–422. doi: 10.1021/jm00225a017. [DOI] [PubMed] [Google Scholar]
- Walaas O., Walaas E., Gronnerod O. Hormonal regulation of cyclic-AMP-dependent protein kinase of rat diaphragm by epinephrine and insulin. Eur J Biochem. 1973 Dec 17;40(2):465–477. doi: 10.1111/j.1432-1033.1973.tb03215.x. [DOI] [PubMed] [Google Scholar]
- Walkenbach R. J., Hazen R., Larner J. Reversible inhibition of cyclic AMP-dependent protein kinase by insulin. Mol Cell Biochem. 1978 Feb 24;19(1):31–41. doi: 10.1007/BF00231232. [DOI] [PubMed] [Google Scholar]
- Yagura T. S., Miller J. P. Activation of type I and type II cyclic AMP-dependent protein kinases by 2,8-disubstituted derivatives of cyclic AMP. Biochim Biophys Acta. 1980 Jul 3;630(3):463–467. doi: 10.1016/0304-4165(80)90296-2. [DOI] [PubMed] [Google Scholar]
