Abstract
Squirrel monkeys (Saimiri sciureus) have a striking color-vision polymorphism; each animal has one of six different types of color vision. These arise from individual variation in the presence of three different middle- to long-wavelength cone pigments. The distribution of cone phenotypes was established for a large sample of squirrel monkeys, including several families, through analysis of a retinal gross potential. The results indicate that the inheritance of color vision in the squirrel monkey can be explained by assuming that the three middle- to long-wavelength cone pigments are specified by three alleles at a single locus on the X chromosome. This arrangement is discretely different from that found in Old World monkeys and humans.
Full text
PDF![2545](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3169/304691/50c2aa63e361/pnas00273-0443.png)
![2546](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3169/304691/7d21738f3bfc/pnas00273-0444.png)
![2547](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3169/304691/b2be87844d29/pnas00273-0445.png)
![2548](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3169/304691/4d02c0f15eae/pnas00273-0446.png)
![2549](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3169/304691/c5883c681738/pnas00273-0447.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ariga S., Dukelow W. R., Emley G. S., Hutchinson R. R. Possible errors in identification of squirrel monkeys (Saimiri sciureus) from different South American points of export. J Med Primatol. 1978;7(3):129–135. doi: 10.1159/000459802. [DOI] [PubMed] [Google Scholar]
- Bowmaker J. K., Jacobs G. H., Spiegelhalter D. J., Mollon J. D. Two types of trichromatic squirrel monkey share a pigment in the red-green spectral region. Vision Res. 1985;25(12):1937–1946. doi: 10.1016/0042-6989(85)90018-5. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Blakeslee B. Individual variations in color vision among squirrel monkeys (Saimiri sciureus) of different geographical origins. J Comp Psychol. 1984 Dec;98(4):347–357. [PubMed] [Google Scholar]
- Jacobs G. H., Neitz J. Color vision in squirrel monkeys: sex-related differences suggest the mode of inheritance. Vision Res. 1985;25(1):141–143. doi: 10.1016/0042-6989(85)90088-4. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision. Vision Res. 1984;24(10):1267–1277. doi: 10.1016/0042-6989(84)90181-0. [DOI] [PubMed] [Google Scholar]
- LYON M. F. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet. 1962 Jun;14:135–148. [PMC free article] [PubMed] [Google Scholar]
- Mollon J. D., Bowmaker J. K., Jacobs G. H. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):373–399. doi: 10.1098/rspb.1984.0071. [DOI] [PubMed] [Google Scholar]
- Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
- Neitz J., Jacobs G. H. Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys. J Opt Soc Am A. 1984 Dec;1(12):1175–1180. doi: 10.1364/josaa.1.001175. [DOI] [PubMed] [Google Scholar]
- Stephens J. A., Taylor A. Fatigue of maintained voluntary muscle contraction in man. J Physiol. 1972 Jan;220(1):1–18. doi: 10.1113/jphysiol.1972.sp009691. [DOI] [PMC free article] [PubMed] [Google Scholar]