Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(9):2673–2677. doi: 10.1073/pnas.84.9.2673

Alternative processing of bovine growth hormone mRNA: nonsplicing of the final intron predicts a high molecular weight variant of bovine growth hormone.

R K Hampson, F M Rottman
PMCID: PMC304720  PMID: 3472230

Abstract

We have detected a variant species of bovine growth hormone mRNA in bovine pituitary tissue and in a stably transfected bovine growth hormone-producing cell line. Analysis of this variant mRNA indicated that the last intervening sequence (intron D) had not been removed by splicing. Inspection of the sequence of intron D reveals an open reading frame through the entire intron, with a termination codon encountered 50 nucleotides into the fifth exon, which is shifted from the normal reading frame in this variant mRNA. If translated, this variant mRNA would encode a growth hormone-related polypeptide having 125 amino-terminal amino acids identical to wild-type growth hormone, followed by 108 carboxyl-terminal amino acids encoded by the 274 bases of intron D along with the first 50 nucleotides of exon 5. This variant polypeptide would be 42 amino acids longer than wild-type bovine growth hormone or approximately 5000 greater in molecular weight. The intron D-containing variant of bovine growth hormone mRNA was demonstrated to exist on polysomes, suggesting that this mRNA species is translated into a polypeptide. Cytosolic mRNA species containing any of the other three introns of the bovine growth hormone gene were not detectable.

Full text

PDF
2673

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breitbart R. E., Nguyen H. T., Medford R. M., Destree A. T., Mahdavi V., Nadal-Ginard B. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell. 1985 May;41(1):67–82. doi: 10.1016/0092-8674(85)90062-5. [DOI] [PubMed] [Google Scholar]
  2. Camper S. A., Yao Y. A., Rottman F. M. Hormonal regulation of the bovine prolactin promoter in rat pituitary tumor cells. J Biol Chem. 1985 Oct 5;260(22):12246–12251. [PubMed] [Google Scholar]
  3. Crabtree G. R., Kant J. A. Organization of the rat gamma-fibrinogen gene: alternative mRNA splice patterns produce the gamma A and gamma B (gamma ') chains of fibrinogen. Cell. 1982 Nov;31(1):159–166. doi: 10.1016/0092-8674(82)90415-9. [DOI] [PubMed] [Google Scholar]
  4. DeNoto F. M., Moore D. D., Goodman H. M. Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Res. 1981 Aug 11;9(15):3719–3730. doi: 10.1093/nar/9.15.3719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Derman E., Krauter K., Walling L., Weinberger C., Ray M., Darnell J. E., Jr Transcriptional control in the production of liver-specific mRNAs. Cell. 1981 Mar;23(3):731–739. doi: 10.1016/0092-8674(81)90436-0. [DOI] [PubMed] [Google Scholar]
  6. Gordon D. F., Quick D. P., Erwin C. R., Donelson J. E., Maurer R. A. Nucleotide sequence of the bovine growth hormone chromosomal gene. Mol Cell Endocrinol. 1983 Nov;33(1):81–95. doi: 10.1016/0303-7207(83)90058-8. [DOI] [PubMed] [Google Scholar]
  7. Lewis U. J. Variants of growth hormone and prolactin and their posttranslational modifications. Annu Rev Physiol. 1984;46:33–42. doi: 10.1146/annurev.ph.46.030184.000341. [DOI] [PubMed] [Google Scholar]
  8. Nilsen T. W., Maroney P. A. Translational efficiency of cMyc mRNA in Burkitt lymphoma cells. Mol Cell Biol. 1984 Oct;4(10):2235–2238. doi: 10.1128/mcb.4.10.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nilson J. H., Barringer K. J., Convey E. M., Friderici K., Rottman F. M. Ontogeny of pituitary hormone mRNAs in the bovine fetus. Quantitation of pre-prolactin mRNA as a function of gestation. J Biol Chem. 1980 Jun 25;255(12):5871–5878. [PubMed] [Google Scholar]
  10. Nilson J. H., Fink P. A., Virgin J. B., Cserbak M. T., Camper S. A., Rottman F. M. Developmental expression of growth hormone and prolactin genes in the bovine pituitary. J Biol Chem. 1983 Apr 10;258(7):4565–4570. [PubMed] [Google Scholar]
  11. Rennels E. G., Herbert D. C. Functional correlates of anterior pituitary cytology. Int Rev Physiol. 1980;22:1–40. [PubMed] [Google Scholar]
  12. Rosenfeld M. G., Amara S. G., Evans R. M. Alternative RNA processing: determining neuronal phenotype. Science. 1984 Sep 21;225(4668):1315–1320. doi: 10.1126/science.6089345. [DOI] [PubMed] [Google Scholar]
  13. Santomé J. A., Dellacha J. M., Paladini A. C., Peña C., Biscoglio M. J., Daurat S. T., Poskus E., Wolfenstein C. E. Primary structure of bovine growth hormone. Eur J Biochem. 1973 Aug 1;37(1):164–170. doi: 10.1111/j.1432-1033.1973.tb02971.x. [DOI] [PubMed] [Google Scholar]
  14. Spindel E. R., Zilberberg M. D., Habener J. F., Chin W. W. Two prohormones for gastrin-releasing peptide are encoded by two mRNAs differing by 19 nucleotides. Proc Natl Acad Sci U S A. 1986 Jan;83(1):19–23. doi: 10.1073/pnas.83.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Subramani S., Mulligan R., Berg P. Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors. Mol Cell Biol. 1981 Sep;1(9):854–864. doi: 10.1128/mcb.1.9.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomsen D. R., Stenberg R. M., Goins W. F., Stinski M. F. Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc Natl Acad Sci U S A. 1984 Feb;81(3):659–663. doi: 10.1073/pnas.81.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Virgin J. B., Silver B. J., Thomason A. R., Nilson J. H. The gene for the beta subunit of bovine luteinizing hormone encodes a gonadotropin mRNA with an unusually short 5'-untranslated region. J Biol Chem. 1985 Jun 10;260(11):7072–7077. [PubMed] [Google Scholar]
  19. Woychik R. P., Camper S. A., Lyons R. H., Horowitz S., Goodwin E. C., Rottman F. M. Cloning and nucleotide sequencing of the bovine growth hormone gene. Nucleic Acids Res. 1982 Nov 25;10(22):7197–7210. doi: 10.1093/nar/10.22.7197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Young R. A., Hagenbüchle O., Schibler U. A single mouse alpha-amylase gene specifies two different tissue-specific mRNAs. Cell. 1981 Feb;23(2):451–458. doi: 10.1016/0092-8674(81)90140-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES