Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(9):2999–3003. doi: 10.1073/pnas.84.9.2999

Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen.

B Kalyanaraman, J B Feix, F Sieber, J P Thomas, A W Girotti
PMCID: PMC304788  PMID: 3033673

Abstract

The photochemistry of merocyanine 540 (MC 540), a sensitizing dye that binds preferentially to leukemia and electrically excitable cells, has been investigated. MC 540-mediated photooxidation of histidine, arachidonate, and unsaturated phospholipid vesicles was assessed by spin label oximetry and shown to involve type II (singlet oxygen) chemistry. The dye was also shown to be a potent sensitizer of lipid peroxidation in a natural cell membrane, the erythrocyte ghost. Inhibition by azide, stimulation by 2H2O, and identification of the cholesterol product 5 alpha-cholest-6-ene-3 beta,5-diol in this system, all were consistent with singlet oxygen intermediacy. Finally, MC 540 was found to be considerably more phototoxic to K-562 leukemia cells in 2H2O than in H2O. We conclude that singlet oxygen plays a major role in the phototherapeutic effects of this dye.

Full text

PDF
2999

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiuchi T., Kobatake Y. Electrostatic interaction between merocyanine 540 and liposomal and mitochondrial membranes. J Membr Biol. 1979 Apr 9;45(3-4):233–244. doi: 10.1007/BF01869287. [DOI] [PubMed] [Google Scholar]
  2. Ankel E., Felix C. C., Kalyanaraman B. The use of spin label oximetry in the study of photodynamic inactivation of Chinese hamster ovary cells. Photochem Photobiol. 1986 Dec;44(6):741–746. doi: 10.1111/j.1751-1097.1986.tb05532.x. [DOI] [PubMed] [Google Scholar]
  3. Byers G. W., Gross S., Henrichs P. M. Direct and sensitized photooxidation of cyanine dyes. Photochem Photobiol. 1976 Jan;23(1):37–43. doi: 10.1111/j.1751-1097.1976.tb06768.x. [DOI] [PubMed] [Google Scholar]
  4. Easton T. G., Valinsky J. E., Reich E. Merocyanine 540 as a fluorescent probe of membranes: staining of electrically excitable cells. Cell. 1978 Mar;13(3):475–486. doi: 10.1016/0092-8674(78)90321-5. [DOI] [PubMed] [Google Scholar]
  5. Feix J. B., Popp C. A., Venkataramu S. D., Beth A. H., Park J. H., Hyde J. S. An electron-electron double-resonance study of interactions between [14N]- and [15N]stearic acid spin-label pairs: lateral diffusion and vertical fluctuations in dimyristoylphosphatidylcholine. Biochemistry. 1984 May 8;23(10):2293–2299. doi: 10.1021/bi00305a032. [DOI] [PubMed] [Google Scholar]
  6. Girotti A. W., Thomas J. P. Damaging effects of oxygen radicals on resealed erythrocyte ghosts. J Biol Chem. 1984 Feb 10;259(3):1744–1752. [PubMed] [Google Scholar]
  7. Girotti A. W., Thomas J. P., Jordan J. E. Lipid photooxidation in erythrocyte ghosts: sensitization of the membranes toward ascorbate- and superoxide-induced peroxidation and lysis. Arch Biochem Biophys. 1985 Jan;236(1):238–251. doi: 10.1016/0003-9861(85)90623-x. [DOI] [PubMed] [Google Scholar]
  8. Girotti A. W., Thomas J. P., Jordan J. E. Prooxidant and antioxidant effects of ascorbate on photosensitized peroxidation of lipids in erythrocyte membranes. Photochem Photobiol. 1985 Mar;41(3):267–276. doi: 10.1111/j.1751-1097.1985.tb03484.x. [DOI] [PubMed] [Google Scholar]
  9. Kulig M. J., Smith L. L. Sterol metabolism. XXV. Cholesterol oxidation by singlet molecular oxygen. J Org Chem. 1973 Oct 5;38(20):3639–3642. doi: 10.1021/jo00960a050. [DOI] [PubMed] [Google Scholar]
  10. Lai C. S., Hopwood L. E., Hyde J. S., Lukiewicz S. ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1166–1170. doi: 10.1073/pnas.79.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meagher R. C., Sieber F., Spivak J. L. Susceptibility to merocyanine 540-mediated photosensitization: a differentiation marker on murine hematopoietic progenitor cells. J Cell Physiol. 1983 Jul;116(1):118–124. doi: 10.1002/jcp.1041160118. [DOI] [PubMed] [Google Scholar]
  12. Nilsson R., Merkel P. B., Kearns D. R. Unambiguous evidence for the participation of singlet oxygen ( 1 ) in photodynamic oxidation of amino acids. Photochem Photobiol. 1972 Aug;16(2):117–124. doi: 10.1111/j.1751-1097.1972.tb07343.x. [DOI] [PubMed] [Google Scholar]
  13. Schlegel R. A., Phelps B. M., Waggoner A., Terada L., Williamson P. Binding of merocyanine 540 to normal and leukemic erythroid cells. Cell. 1980 Jun;20(2):321–328. doi: 10.1016/0092-8674(80)90618-2. [DOI] [PubMed] [Google Scholar]
  14. Sieber F., Rao S., Rowley S. D., Sieber-Blum M. Dye-mediated photolysis of human neuroblastoma cells: implications for autologous bone marrow transplantation. Blood. 1986 Jul;68(1):32–36. [PubMed] [Google Scholar]
  15. Sieber F., Sieber-Blum M. Dye-mediated photosensitization of murine neuroblastoma cells. Cancer Res. 1986 Apr;46(4 Pt 2):2072–2076. [PubMed] [Google Scholar]
  16. Sieber F., Spivak J. L., Sutcliffe A. M. Selective killing of leukemic cells by merocyanine 540-mediated photosensitization. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7584–7587. doi: 10.1073/pnas.81.23.7584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sieber F., Stuart R. K., Rowley S. D., Sharkis S. J., Sensenbrenner L. L. Dye-mediated photolysis of normal and neoplastic hematopoietic cells. Leuk Res. 1987;11(1):43–49. doi: 10.1016/0145-2126(87)90104-4. [DOI] [PubMed] [Google Scholar]
  18. Smith L. L., Teng J. I., Kulig M. J., Hill F. L. Sterol metabolism. 23. Cholesterol oxidation by radiation-induced processes. J Org Chem. 1973 May 4;38(9):1763–1765. doi: 10.1021/jo00949a041. [DOI] [PubMed] [Google Scholar]
  19. Valinsky J. E., Easton T. G., Reich E. Merocyanine 540 as a fluorescent probe of membranes: selective staining of leukemic and immature hemopoietic cells. Cell. 1978 Mar;13(3):487–499. doi: 10.1016/0092-8674(78)90322-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES