Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(9):3043–3046. doi: 10.1073/pnas.84.9.3043

Cloning and sequence analysis of cDNAs for neurohypophysial hormones vasotocin and mesotocin for the hypothalamus of toad, Bufo japonicus.

H Nojiri, I Ishida, E Miyashita, M Sato, A Urano, T Deguchi
PMCID: PMC304798  PMID: 3033676

Abstract

The primary structures of the precursors of neurohypophysial hormones vasotocin (VT) and mesotocin (MT) in the hypothalamus of the toad Bufo japonicus were determined by analyzing the nucleotide sequences of the cloned cDNAs encoding them. The MT precursor consists of 125 amino acid residues containing a signal peptide followed directly by MT, which in turn is connected to the MT neurophysin by Gly-Lys-Arg, a processing and carboxyl-terminal amidation signal. In contrast, the VT precursor includes a glycoprotein of 36 amino acids following the VT neurophysin. Except for glycoprotein, the structures of MT and VT precursors are quite similar. RNA transfer blotting analysis showed that both MT and VT mRNAs are present in the brain but not in the liver, ovaries, and testes of the toad. The sequences and the structural organizations of the MT and VT precursors are highly homologous to those of their mammalian counterparts, oxytocin and arginine vasopressin precursors, respectively. This fact suggests that, in the evolutionary pathway of neurohypophysial hormones, VT is the ancestor molecule of vasopressin, while MT is that of oxytocin.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acher R. Molecular evolution of biologically active polypeptides. Proc R Soc Lond B Biol Sci. 1980 Oct 29;210(1178):21–43. doi: 10.1098/rspb.1980.0116. [DOI] [PubMed] [Google Scholar]
  2. Agarwal K. L., Brunstedt J., Noyes B. E. A general method for detection and characterization of an mRNA using an oligonucleotide probe. J Biol Chem. 1981 Jan 25;256(2):1023–1028. [PubMed] [Google Scholar]
  3. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownstein M. J., Russell J. T., Gainer H. Synthesis, transport, and release of posterior pituitary hormones. Science. 1980 Jan 25;207(4429):373–378. doi: 10.1126/science.6153132. [DOI] [PubMed] [Google Scholar]
  5. Chauvet M. T., Lévy B., Michel G., Chauvet J., Acher R. Precursors of mesotocin and vasotocin in birds: identification of VLDV- and MSEL- neurophysins in chicken, goose, and ostrich. Biosci Rep. 1986 Apr;6(4):381–385. doi: 10.1007/BF01116425. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Ishida I., Ichikawa T., Deguchi T. Cloning and sequence analysis of cDNA encoding urotensin I precursor. Proc Natl Acad Sci U S A. 1986 Jan;83(2):308–312. doi: 10.1073/pnas.83.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ivell R., Richter D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2006–2010. doi: 10.1073/pnas.81.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jokura Y., Urano A. Projections of luteinizing hormone-releasing hormone and vasotocin fibers to the anterior part of the preoptic nucleus in the toad, Bufo japonicus. Gen Comp Endocrinol. 1985 Dec;60(3):390–397. doi: 10.1016/0016-6480(85)90072-3. [DOI] [PubMed] [Google Scholar]
  10. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Land H., Grez M., Ruppert S., Schmale H., Rehbein M., Richter D., Schütz G. Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature. 1983 Mar 24;302(5906):342–344. doi: 10.1038/302342a0. [DOI] [PubMed] [Google Scholar]
  12. Land H., Schütz G., Schmale H., Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature. 1982 Jan 28;295(5847):299–303. doi: 10.1038/295299a0. [DOI] [PubMed] [Google Scholar]
  13. Okayama H., Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol. 1982 Feb;2(2):161–170. doi: 10.1128/mcb.2.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pless D. D., Lennarz W. J. Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci U S A. 1977 Jan;74(1):134–138. doi: 10.1073/pnas.74.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ruppert S., Scherer G., Schütz G. Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence. Nature. 1984 Apr 5;308(5959):554–557. doi: 10.1038/308554a0. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sausville E., Carney D., Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem. 1985 Aug 25;260(18):10236–10241. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES