Abstract
Brief substrate deprivation resulted in high mortality of superior cervical ganglion neurons in culture, assayed 2 hr later by trypan blue exclusion. Involvement of superoxide anions was indicated by several observations. Survival was increased significantly by prior treatment that induced cells to take up superoxide dismutase. During starvation, neurons reduced nitroblue tetrazolium to form the blue precipitate formazan, and the color change was blocked in neurons preloaded with superoxide dismutase. The incidence of staining was comparable to the mortality. In many cells, brief starvation caused the appearance of fluorescence due to oxidation of 2',7'-dichlorofluorescin to dichlorofluorescein, which indicates that oxidants were generated intracellularly. In some cells fluorescence was transient, as would be caused by membrane breakdown, and these cells were then shown to be dead. Superoxide generation caused by substrate deprivation may contribute importantly to cell damage in a variety of pathological conditions.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
- Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem. 1984 Aug 1;140(2):532–537. doi: 10.1016/0003-2697(84)90204-5. [DOI] [PubMed] [Google Scholar]
- Demopoulos H. B., Flamm E. S., Pietronigro D. D., Seligman M. L. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl. 1980;492:91–119. [PubMed] [Google Scholar]
- Flamm E. S., Demopoulos H. B., Seligman M. L., Poser R. G., Ransohoff J. Free radicals in cerebral ischemia. Stroke. 1978 Sep-Oct;9(5):445–447. doi: 10.1161/01.str.9.5.445. [DOI] [PubMed] [Google Scholar]
- Garthwaite G., Hajós F., Garthwaite J. Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neuroscience. 1986 Jun;18(2):437–447. doi: 10.1016/0306-4522(86)90164-8. [DOI] [PubMed] [Google Scholar]
- Gauduel Y., Duvelleroy M. A. Role of oxygen radicals in cardiac injury due to reoxygenation. J Mol Cell Cardiol. 1984 May;16(5):459–470. doi: 10.1016/s0022-2828(84)80617-3. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Spray D. C., Saez J. C., Bennett M. V. Determination of synaptic phenotype: insulin and cAMP independently initiate development of electrotonic coupling between cultured sympathetic neurons. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6235–6239. doi: 10.1073/pnas.81.19.6235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ljunggren B., Schutz H., Siesjö B. K. Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 1974 Jun 20;73(2):277–289. doi: 10.1016/0006-8993(74)91049-x. [DOI] [PubMed] [Google Scholar]
- Ment L. R., Stewart W. B., Duncan C. C. Beagle puppy model of intraventricular hemorrhage. Effect of superoxide dismutase on cerebral blood flow and prostaglandins. J Neurosurg. 1985 Apr;62(4):563–569. doi: 10.3171/jns.1985.62.4.0563. [DOI] [PubMed] [Google Scholar]
- Michelson A. M., Puget K. Cell penetration by exogenous superoxide dismutase. Acta Physiol Scand Suppl. 1980;492:67–80. [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972 May 25;247(10):3170–3175. [PubMed] [Google Scholar]
- PORTA P. D., MAIOLO A. T., NEGRI V. U., ROSSELLA E. CEREBRAL BLOOD FLOW AND METABOLISM IN THERAPEUTIC INSULIN COMA. Metabolism. 1964 Feb;13:131–140. doi: 10.1016/0026-0495(64)90126-x. [DOI] [PubMed] [Google Scholar]
- Parks D. A., Bulkley G. B., Granger D. N., Hamilton S. R., McCord J. M. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology. 1982 Jan;82(1):9–15. [PubMed] [Google Scholar]
- Petkau A., Kelly K., Chelack W. S., Pleskach S. D., Barefoot C., Meeker B. E. Radioprotection of bone marrow stem cells by superoxide dismutase. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1167–1174. doi: 10.1016/0006-291x(75)90796-2. [DOI] [PubMed] [Google Scholar]
- Rehncrona S., Folbergrová J., Smith D. S., Siesjö B. K. Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J Neurochem. 1980 Mar;34(3):477–486. doi: 10.1111/j.1471-4159.1980.tb11170.x. [DOI] [PubMed] [Google Scholar]
- Rothman S. M. Synaptic activity mediates death of hypoxic neurons. Science. 1983 Apr 29;220(4596):536–537. doi: 10.1126/science.6836300. [DOI] [PubMed] [Google Scholar]
- Sáez J. C., Ward P. H., Günther B., Vivaldi E. Superoxide radical involvement in the pathogenesis of burn shock. Circ Shock. 1984;12(4):229–239. [PubMed] [Google Scholar]
- Taylor M. D., Palmer G. C., Callahan A. S., 3rd Protective action by methylprednisolone, allopurinol and indomethacin against stroke-induced damage to adenylate cyclase in gerbil cerebral cortex. Stroke. 1984 Mar-Apr;15(2):329–335. doi: 10.1161/01.str.15.2.329. [DOI] [PubMed] [Google Scholar]
- Watson B. D., Busto R., Goldberg W. J., Santiso M., Yoshida S., Ginsberg M. D. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem. 1984 Jan;42(1):268–274. doi: 10.1111/j.1471-4159.1984.tb09728.x. [DOI] [PubMed] [Google Scholar]
- Wei E. P., Kontos H. A., Dietrich W. D., Povlishock J. T., Ellis E. F. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res. 1981 Jan;48(1):95–103. doi: 10.1161/01.res.48.1.95. [DOI] [PubMed] [Google Scholar]
- Wieloch T., Harris R. J., Symon L., Siesjö B. K. Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem. 1984 Jul;43(1):160–168. doi: 10.1111/j.1471-4159.1984.tb06692.x. [DOI] [PubMed] [Google Scholar]
- Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science. 1985 Nov 8;230(4726):681–683. doi: 10.1126/science.2996146. [DOI] [PubMed] [Google Scholar]
- Yoshida S., Abe K., Busto R., Watson B. D., Kogure K., Ginsberg M. D. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res. 1982 Aug 12;245(2):307–316. doi: 10.1016/0006-8993(82)90813-7. [DOI] [PubMed] [Google Scholar]



