Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(10):3127–3131. doi: 10.1073/pnas.84.10.3127

Properties of the duplex DNA-dependent ATPase activity of Escherichia coli RecA protein and its role in branch migration.

S C Kowalczykowski, J Clow, R A Krupp
PMCID: PMC304821  PMID: 3033635

Abstract

We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2 or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at approximately equal to 5 +/- 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.

Full text

PDF
3127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianchi M., Riboli B., Magni G. E. coli recA protein possesses a strand separating activity on short duplex DNAs. EMBO J. 1985 Nov;4(11):3025–3030. doi: 10.1002/j.1460-2075.1985.tb04039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cazenave C., Chabbert M., Toulme J. J., Helene C. Absorption and fluorescence studies of the binding of the recA gene product from E. coli to single-stranded and double-stranded DNA. Ionic strength dependence. Biochim Biophys Acta. 1984 Feb 24;781(1-2):7–13. doi: 10.1016/0167-4781(84)90117-9. [DOI] [PubMed] [Google Scholar]
  3. Chow S. A., Honigberg S. M., Bainton R. J., Radding C. M. Patterns of nuclease protection during strand exchange. recA protein forms heteroduplex DNA by binding to strands of the same polarity. J Biol Chem. 1986 May 25;261(15):6961–6971. [PubMed] [Google Scholar]
  4. Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
  5. Cox M. M., Lehman I. R. Directionality and polarity in recA protein-promoted branch migration. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6018–6022. doi: 10.1073/pnas.78.10.6018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox M. M., Lehman I. R. recA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3433–3437. doi: 10.1073/pnas.78.6.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox M. M., McEntee K., Lehman I. R. A simple and rapid procedure for the large scale purification of the recA protein of Escherichia coli. J Biol Chem. 1981 May 10;256(9):4676–4678. [PubMed] [Google Scholar]
  8. Cox M. M., Morrical S. W., Neuendorf S. K. Unidirectional branch migration promoted by nucleoprotein filaments of RecA protein and DNA. Cold Spring Harb Symp Quant Biol. 1984;49:525–533. doi: 10.1101/sqb.1984.049.01.059. [DOI] [PubMed] [Google Scholar]
  9. Cox M. M., Soltis D. A., Lehman I. R., DeBrosse C., Benkovic S. J. ADP-mediated dissociation of stable complexes of recA protein and single-stranded DNA. J Biol Chem. 1983 Feb 25;258(4):2586–2592. [PubMed] [Google Scholar]
  10. Flory S. S., Tsang J., Muniyappa K., Bianchi M., Gonda D., Kahn R., Azhderian E., Egner C., Shaner S., Radding C. M. Intermediates in homologous pairing promoted by RecA protein and correlations of recombination in vitro and in vivo. Cold Spring Harb Symp Quant Biol. 1984;49:513–523. doi: 10.1101/sqb.1984.049.01.058. [DOI] [PubMed] [Google Scholar]
  11. Gonda D. K., Shibata T., Radding C. M. Kinetics of homologous pairing promoted by RecA protein: effects of ends and internal sites in DNA. Biochemistry. 1985 Jan 15;24(2):413–420. doi: 10.1021/bi00323a026. [DOI] [PubMed] [Google Scholar]
  12. Julin D. A., Riddles P. W., Lehman I. R. On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli. J Biol Chem. 1986 Jan 25;261(3):1025–1030. [PubMed] [Google Scholar]
  13. Kahn R., Cunningham R. P., DasGupta C., Radding C. M. Polarity of heteroduplex formation promoted by Escherichia coli recA protein. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4786–4790. doi: 10.1073/pnas.78.8.4786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kowalczykowski S. C. Interaction of recA protein with a photoaffinity analogue of ATP, 8-azido-ATP: determination of nucleotide cofactor binding parameters and of the relationship between ATP binding and ATP hydrolysis. Biochemistry. 1986 Oct 7;25(20):5872–5881. doi: 10.1021/bi00368a006. [DOI] [PubMed] [Google Scholar]
  15. Kowalczykowski S. C., Krupp R. A. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol. 1987 Jan 5;193(1):97–113. doi: 10.1016/0022-2836(87)90630-9. [DOI] [PubMed] [Google Scholar]
  16. Kreuzer K. N., Jongeneel C. V. Escherichia coli phage T4 topoisomerase. Methods Enzymol. 1983;100:144–160. doi: 10.1016/0076-6879(83)00051-8. [DOI] [PubMed] [Google Scholar]
  17. Menetski J. P., Kowalczykowski S. C. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol. 1985 Jan 20;181(2):281–295. doi: 10.1016/0022-2836(85)90092-0. [DOI] [PubMed] [Google Scholar]
  18. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  19. Radding C. M. Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet. 1982;16:405–437. doi: 10.1146/annurev.ge.16.120182.002201. [DOI] [PubMed] [Google Scholar]
  20. Register J. C., 3rd, Griffith J. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J Biol Chem. 1985 Oct 5;260(22):12308–12312. [PubMed] [Google Scholar]
  21. Roman L. J., Kowalczykowski S. C. Relationship of the physical and enzymatic properties of Escherichia coli recA protein to its strand exchange activity. Biochemistry. 1986 Nov 18;25(23):7375–7385. doi: 10.1021/bi00371a020. [DOI] [PubMed] [Google Scholar]
  22. Shibata T., Makino O., Ikawa S., Ohtani T., Iwabuchi M., Shibata Y., Maeda H., Ando T. Roles of processive unwinding in recombination reactions promoted by RecA protein of Escherichia coli: a study using a monoclonal antibody. Cold Spring Harb Symp Quant Biol. 1984;49:541–551. doi: 10.1101/sqb.1984.049.01.061. [DOI] [PubMed] [Google Scholar]
  23. Takashima H., Nakanishi M., Tsuboi M. Determination of the kinetics of deuteration of DNA.RNA hybrids by ultraviolet spectroscopy. Biochemistry. 1985 Aug 27;24(18):4823–4825. doi: 10.1021/bi00339a016. [DOI] [PubMed] [Google Scholar]
  24. Weinstock G. M., McEntee K., Lehman I. R. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Steady state kinetic analysis of ATP hydrolysis. J Biol Chem. 1981 Aug 25;256(16):8845–8849. [PubMed] [Google Scholar]
  25. West S. C., Cassuto E., Howard-Flanders P. Heteroduplex formation by recA protein: polarity of strand exchanges. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6149–6153. doi: 10.1073/pnas.78.10.6149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. West S. C., Cassuto E., Howard-Flanders P. Homologous pairing can occur before DNA strand separation in general genetic recombination. Nature. 1981 Mar 5;290(5801):29–33. doi: 10.1038/290029a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES