Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(10):3259–3263. doi: 10.1073/pnas.84.10.3259

Periodic crosslinking of microtubules by cytoplasmic microtubule-associated and microtubule-corset proteins from a trypanosomatid.

G T Bramblett, S L Chang, M Flavin
PMCID: PMC304848  PMID: 2883651

Abstract

The dominant element in the cytoskeleton of Crithidia fasciculata is a peripheral corset of microtubules enclosing the cell body and closely underlying the plasma membrane. A lateral spacing of 50 nm is maintained by crosslinks, and microtubules may also be linked to the plasma membrane. We have characterized groups of polypeptides that associate with microtubules polymerized in vitro from the cytoplasm, or that are associated with the corset complex. They differ except for one of Mr 33,000 present in both groups. The corresponding native corset protein appears to be a dimer of Mr 66,000. These protein(s) copolymerize with brain tubulin, and the resultant polymer consists of pairs or small parallel bundles of microtubules, joined by periodic crosslinks spaced about 8.5 nm apart.

Full text

PDF
3259

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aamodt E. J., Culotti J. G. Microtubules and microtubule-associated proteins from the nematode Caenorhabditis elegans: periodic cross-links connect microtubules in vitro. J Cell Biol. 1986 Jul;103(1):23–31. doi: 10.1083/jcb.103.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertini D. F., Herman B., Sherline P. In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling. Eur J Cell Biol. 1984 Jan;33(1):134–143. [PubMed] [Google Scholar]
  3. Kumar N., Flavin M. Modulation of some parameters of assembly of microtubules in vitro by tyrosinolation of tubulin. Eur J Biochem. 1982 Nov;128(1):215–222. doi: 10.1111/j.1432-1033.1982.tb06954.x. [DOI] [PubMed] [Google Scholar]
  4. McGhee R. B., Cosgrove W. B. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 1980 Mar;44(1):140–173. doi: 10.1128/mr.44.1.140-173.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Murthy A. S., Bramblett G. T., Flavin M. The sites at which brain microtubule-associated protein 2 is phosphorylated in vivo differ from those accessible to cAMP-dependent kinase in vitro. J Biol Chem. 1985 Apr 10;260(7):4364–4370. [PubMed] [Google Scholar]
  6. Murthy A. S., Flavin M. Microtubule assembly using the microtubule-associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur J Biochem. 1983 Dec 1;137(1-2):37–46. doi: 10.1111/j.1432-1033.1983.tb07792.x. [DOI] [PubMed] [Google Scholar]
  7. Paulin J. J., McGhee R. B. An ultrasturctural study of the trypanosomatid, Phytomonas elmassiani, from the milkweed, Asclepias syriaca. J Parasitol. 1971 Dec;57(6):1279–1287. [PubMed] [Google Scholar]
  8. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  9. Russell D. G., Miller D., Gull K. Tubulin heterogeneity in the trypanosome Crithidia fasciculata. Mol Cell Biol. 1984 Apr;4(4):779–790. doi: 10.1128/mcb.4.4.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scholey J. M., Neighbors B., McIntosh J. R., Salmon E. D. Isolation of microtubules and a dynein-like MgATPase from unfertilized sea urchin eggs. J Biol Chem. 1984 May 25;259(10):6516–6525. [PubMed] [Google Scholar]
  11. Stieger J., Seebeck T. Monoclonal antibodies against a 60 kDa phenothiazine-binding protein from Trypanosoma brucei can discriminate between different trypanosome species. Mol Biochem Parasitol. 1986 Oct;21(1):37–45. doi: 10.1016/0166-6851(86)90077-0. [DOI] [PubMed] [Google Scholar]
  12. Tsuyama S., Bramblett G. T., Huang K. P., Flavin M. Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases. J Biol Chem. 1986 Mar 25;261(9):4110–4116. [PubMed] [Google Scholar]
  13. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vickerman K. Parasitology. Clandestine sex in trypanosomes. Nature. 1986 Jul 10;322(6075):113–114. doi: 10.1038/322113a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES