Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(10):3274–3277. doi: 10.1073/pnas.84.10.3274

Differential regulation of colony-stimulating factors and interleukin 2 production by cyclosporin A.

M Bickel, H Tsuda, P Amstad, V Evequoz, S E Mergenhagen, S M Wahl, D H Pluznik
PMCID: PMC304851  PMID: 3494996

Abstract

Stimulation of T lymphocytes with mitogens or antigens is followed by proliferation and lymphokine production. Although cyclosporin A (CsA), an immunosuppressive drug, has been shown to inhibit the production of certain lymphokines, including interleukin 2 (IL-2), interleukin 3 (IL-3), and gamma-interferon, its effect on the production of granulocyte/macrophage colony-stimulating factor (GM-CSF) has not been evaluated. In the current study, concanavalin A (Con A)-stimulated murine spleen cells secreted GM-CSF, IL-3, and IL-2, and in the presence of CsA (0.1-1.0 micrograms/ml), IL-2 and IL-3 activities were inhibited. In contrast, significant activity was detected when the CsA-treated culture supernatants were assayed on a cell line that is dependent on GM-CSF and/or IL-3. Similar CsA-resistant activity was observed when the EL-4 thymoma cells were stimulated with a phorbol ester [phorbol 12-myristate 13-acetate (PMA)] in the presence of CsA. The activity resistant to CsA was identified as GM-CSF by the ability of specific antibodies against murine recombinant GM-CSF to neutralize its activity. These findings indicate that GM-CSF, in contrast to IL-2 and IL-3, was not inhibited by CsA. In additional experiments, transfer blot of poly(A)+ RNA isolated from PMA-induced EL-4 cells in the presence or the absence of CsA was hybridized with GM-CSF and IL-2 cDNA probes. Expression of the GM-CSF gene in EL-4 cells was detected independent of CsA, whereas CsA inhibited the expression of the IL-2 gene. The present data show that production of IL-2 and IL-3, but not that of GM-CSF, is inhibited by CsA and suggest a differential control mechanism for lymphokine synthesis in T lymphocytes.

Full text

PDF
3274

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. E., Gillis S., Smith K. A. Monoclonal cytolytic T-cell lines. J Exp Med. 1979 Jan 1;149(1):273–278. doi: 10.1084/jem.149.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Elliott J. F., Lin Y., Mizel S. B., Bleackley R. C., Harnish D. G., Paetkau V. Induction of interleukin 2 messenger RNA inhibited by cyclosporin A. Science. 1984 Dec 21;226(4681):1439–1441. doi: 10.1126/science.6334364. [DOI] [PubMed] [Google Scholar]
  4. Gough N. M., Gough J., Metcalf D., Kelso A., Grail D., Nicola N. A., Burgess A. W., Dunn A. R. Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte-macrophage colony stimulating factor. 1984 Jun 28-Jul 4Nature. 309(5971):763–767. doi: 10.1038/309763a0. [DOI] [PubMed] [Google Scholar]
  5. Gough N. M., Metcalf D., Gough J., Grail D., Dunn A. R. Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. EMBO J. 1985 Mar;4(3):645–653. doi: 10.1002/j.1460-2075.1985.tb03678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Granelli-Piperno A., Andrus L., Steinman R. M. Lymphokine and nonlymphokine mRNA levels in stimulated human T cells. Kinetics, mitogen requirements, and effects of cyclosporin A. J Exp Med. 1986 Apr 1;163(4):922–937. doi: 10.1084/jem.163.4.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Granelli-Piperno A., Inaba K., Steinman R. M. Stimulation of lymphokine release from T lymphoblasts. Requirement for mRNA synthesis and inhibition by cyclosporin A. J Exp Med. 1984 Dec 1;160(6):1792–1802. doi: 10.1084/jem.160.6.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kelso A., Glasebrook A. L. Secretion of interleukin 2, macrophage-activating factor, interferon, and colony-stimulating factor by alloreactive T lymphocyte clones. J Immunol. 1984 Jun;132(6):2924–2931. [PubMed] [Google Scholar]
  9. Kelso A., Metcalf D., Gough N. M. Independent regulation of granulocyte-macrophage colony-stimulating factor and multi-lineage colony-stimulating factor production in T lymphocyte clones. J Immunol. 1986 Mar 1;136(5):1718–1725. [PubMed] [Google Scholar]
  10. Krönke M., Leonard W. J., Depper J. M., Arya S. K., Wong-Staal F., Gallo R. C., Waldmann T. A., Greene W. C. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5214–5218. doi: 10.1073/pnas.81.16.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985 Jul 5;229(4708):16–22. doi: 10.1126/science.2990035. [DOI] [PubMed] [Google Scholar]
  12. Mochizuki D. Y., Eisenman J. R., Conlon P. J., Park L. S., Urdal D. L. Development and characterization of antiserum to murine granulocyte-macrophage colony-stimulating factor. J Immunol. 1986 May 15;136(10):3706–3709. [PubMed] [Google Scholar]
  13. Orosz C. G., Roopenian D. C., Widmer M. B., Bach F. H. Analysis of cloned T cell function. II. Differential blockade of various cloned T cell functions by cyclosporine. Transplantation. 1983 Dec;36(6):706–711. doi: 10.1097/00007890-198336060-00024. [DOI] [PubMed] [Google Scholar]
  14. Piechaczyk M., Blanchard J. M., Marty L., Dani C., Panabieres F., El Sabouty S., Fort P., Jeanteur P. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Res. 1984 Sep 25;12(18):6951–6963. doi: 10.1093/nar/12.18.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shevach E. M. The effects of cyclosporin A on the immune system. Annu Rev Immunol. 1985;3:397–423. doi: 10.1146/annurev.iy.03.040185.002145. [DOI] [PubMed] [Google Scholar]
  16. Todd I., Brown M., Rittenberg M. B. Immunologic memory to phosphorylcholine. VI. Heterogeneity in light chain gene expression. Eur J Immunol. 1985 Feb;15(2):177–183. doi: 10.1002/eji.1830150213. [DOI] [PubMed] [Google Scholar]
  17. Watson J. D. Biology and biochemistry of T cell-derived lymphokines. I. The coordinate synthesis of interleukin 2 and colony-stimulating factors in a murine T cell lymphoma. J Immunol. 1983 Jul;131(1):293–297. [PubMed] [Google Scholar]
  18. Yokota T., Arai N., Lee F., Rennick D., Mosmann T., Arai K. Use of a cDNA expression vector for isolation of mouse interleukin 2 cDNA clones: expression of T-cell growth-factor activity after transfection of monkey cells. Proc Natl Acad Sci U S A. 1985 Jan;82(1):68–72. doi: 10.1073/pnas.82.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ythier A. A., Abbud-Filho M., Williams J. M., Loertscher R., Schuster M. W., Nowill A., Hansen J. A., Maltezos D., Strom T. B. Interleukin 2-dependent release of interleukin 3 activity by T4+ human T-cell clones. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7020–7024. doi: 10.1073/pnas.82.20.7020. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES