Abstract
Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. (The distal axonal stumps, which are disconnected from the cell bodies, degenerate and are replaced by the outgrowth of regenerating axonal sprouts arising from the proximal stump). This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), beta-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature of neuronal morphology with important consequences for physiology and behavior.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asbury A. K., Gale M. K., Cox S. C., Baringer J. R., Berg B. O. Giant axonal neuropathy--a unique case with segmental neurofilamentous masses. Acta Neuropathol. 1972;20(3):237–247. doi: 10.1007/BF00686905. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Clark A. W., Griffin J. W., Price D. L. The axonal pathology in chronic IDPN intoxication. J Neuropathol Exp Neurol. 1980 Jan;39(1):42–55. doi: 10.1097/00005072-198001000-00004. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
- Czéh G., Kudo N., Kuno M. Membrane properties and conduction velocity in sensory neurones following central or peripheral axotomy. J Physiol. 1977 Aug;270(1):165–180. doi: 10.1113/jphysiol.1977.sp011944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyck P. J., Lais A., Karnes J., Sparks M., Dyck P. J. Peripheral axotomy induces neurofilament decrease, atrophy, demyelination and degeneration of root and fasciculus gracilis fibers. Brain Res. 1985 Aug 5;340(1):19–36. doi: 10.1016/0006-8993(85)90771-1. [DOI] [PubMed] [Google Scholar]
- Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farel P. B. Reflex activity of regenerating frog spinal motoneurons. Brain Res. 1978 Dec 15;158(2):331–341. doi: 10.1016/0006-8993(78)90679-0. [DOI] [PubMed] [Google Scholar]
- Fine R. E., Bray D. Actin in growing nerve cells. Nat New Biol. 1971 Nov 24;234(47):115–118. doi: 10.1038/newbio234115a0. [DOI] [PubMed] [Google Scholar]
- Friede R. L., Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec. 1970 Aug;167(4):379–387. doi: 10.1002/ar.1091670402. [DOI] [PubMed] [Google Scholar]
- Gillespie M. J., Stein R. B. The relationship between axon diameter, myelin thickness and conduction velocity during atrophy of mammalian peripheral nerves. Brain Res. 1983 Jan 17;259(1):41–56. doi: 10.1016/0006-8993(83)91065-x. [DOI] [PubMed] [Google Scholar]
- Gold B. G., Griffin J. W., Price D. L. Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. J Neurosci. 1985 Jul;5(7):1755–1768. doi: 10.1523/JNEUROSCI.05-07-01755.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol. 1982 Jul;94(1):129–142. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Glicksman M. A., Willard M. B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol. 1984 Apr;98(4):1523–1536. doi: 10.1083/jcb.98.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffer J. A., Stein R. B., Gordon T. Differential atrophy of sensory and motor fibers following section of cat peripheral nerves. Brain Res. 1979 Dec 14;178(2-3):347–361. doi: 10.1016/0006-8993(79)90698-x. [DOI] [PubMed] [Google Scholar]
- Hoffman P. N., Griffin J. W., Gold B. G., Price D. L. Slowing of neurofilament transport and the radial growth of developing nerve fibers. J Neurosci. 1985 Nov;5(11):2920–2929. doi: 10.1523/JNEUROSCI.05-11-02920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman P. N., Griffin J. W., Price D. L. Control of axonal caliber by neurofilament transport. J Cell Biol. 1984 Aug;99(2):705–714. doi: 10.1083/jcb.99.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman P. N., Thompson G. W., Griffin J. W., Price D. L. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol. 1985 Oct;101(4):1332–1340. doi: 10.1083/jcb.101.4.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuno M., Miyata Y., Muñoz-Martinez E. J. Properties of fast and slow alpha motoneurones following motor reinnervation. J Physiol. 1974 Oct;242(1):273–288. doi: 10.1113/jphysiol.1974.sp010706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasek R. J., Dabrowski C., Nordlander R. Analysis of axoplasmic RNA from invertebrate giant axons. Nat New Biol. 1973 Aug 8;244(136):162–165. doi: 10.1038/newbio244162a0. [DOI] [PubMed] [Google Scholar]
- Lasek R. J., Oblinger M. M., Drake P. F. Molecular biology of neuronal geometry: expression of neurofilament genes influences axonal diameter. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):731–744. doi: 10.1101/sqb.1983.048.01.076. [DOI] [PubMed] [Google Scholar]
- Lewis S. A., Cowan N. J. Genetics, evolution, and expression of the 68,000-mol-wt neurofilament protein: isolation of a cloned cDNA probe. J Cell Biol. 1985 Mar;100(3):843–850. doi: 10.1083/jcb.100.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis S. A., Cowan N. J. Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. J Neurochem. 1985 Sep;45(3):913–919. doi: 10.1111/j.1471-4159.1985.tb04080.x. [DOI] [PubMed] [Google Scholar]
- Minwegen P., Friede R. L. Conduction velocity varies with osmotically induced changes of the area of the axon's profile. Brain Res. 1984 Apr 9;297(1):105–113. doi: 10.1016/0006-8993(84)90546-8. [DOI] [PubMed] [Google Scholar]
- Mori H., Komiya Y., Kurokawa M. Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons. J Cell Biol. 1979 Jul;82(1):174–184. doi: 10.1083/jcb.82.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumann D., Scherson T., Ginzburg I., Littauer U. Z., Schwartz M. Regulation of mRNA levels for microtubule proteins during nerve regeneration. FEBS Lett. 1983 Oct 17;162(2):270–276. doi: 10.1016/0014-5793(83)80770-4. [DOI] [PubMed] [Google Scholar]
- Nukada H., Dyck P. J. Decreased axon caliber and neurofilaments in hereditary motor and sensory neuropathy, type I. Ann Neurol. 1984 Aug;16(2):238–241. doi: 10.1002/ana.410160213. [DOI] [PubMed] [Google Scholar]
- Roots B. I. Neurofilament accumulation induced in synapses by leupeptin. Science. 1983 Sep 2;221(4614):971–972. doi: 10.1126/science.6192501. [DOI] [PubMed] [Google Scholar]
- Shank P. R., Hughes S. H., Kung H. J., Majors J. E., Quintrell N., Guntaka R. V., Bishop J. M., Varmus H. E. Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell. 1978 Dec;15(4):1383–1395. doi: 10.1016/0092-8674(78)90063-6. [DOI] [PubMed] [Google Scholar]
- Simpson L. L. The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev. 1981 Sep;33(3):155–188. [PubMed] [Google Scholar]
- Spencer P. S., Schaumburg H. H. Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal degeneration. J Neuropathol Exp Neurol. 1977 Mar-Apr;36(2):276–299. doi: 10.1097/00005072-197703000-00005. [DOI] [PubMed] [Google Scholar]
- Troncoso J. C., Price D. L., Griffin J. W., Parhad I. M. Neurofibrillary axonal pathology in aluminum intoxication. Ann Neurol. 1982 Sep;12(3):278–283. doi: 10.1002/ana.410120312. [DOI] [PubMed] [Google Scholar]
- Weiss P. A., Mayr R. Organelles in neuroplasmic ("axonal") flow: neurofilaments. Proc Natl Acad Sci U S A. 1971 Apr;68(4):846–850. doi: 10.1073/pnas.68.4.846. [DOI] [PMC free article] [PubMed] [Google Scholar]