Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(10):3506–3510. doi: 10.1073/pnas.84.10.3506

Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider Hololena curta.

C W Bowers, H S Phillips, P Lee, Y N Jan, L Y Jan
PMCID: PMC304900  PMID: 3033650

Abstract

A search for potent toxins that inhibit neuronal calcium channels in Drosophila melanogaster has resulted in the identification of a presynaptic neurotoxin from the venom of the hunting spider Hololena curta. Using Drosophila neuromuscular junction as an assay, presynaptic inhibitory activity was purified using gel filtration and reverse-phase HPLC. Data from gel electrophoresis indicate that the toxin is composed of two different subunits of Mr 7000 and 9000. At nanomolar concentrations the toxin produced a complete and long-lasting inhibition of synaptic transmission at the Drosophila larval neuromuscular junction without affecting the amplitudes of the spontaneously occurring miniature junction potentials. The block of transmission produced by the toxin was observed even during the direct depolarization of the motor nerve terminal. These physiological results indicate that the terminal is the site of action for the toxin. Indirect evidence using abnormally excitable Drosophila mutants suggests that the toxin is inhibiting transmitter release by altering the electrical properties of the nerve terminal rather than by interfering with nonelectrical events that may occur subsequent to calcium influx. All of the actions of the Hololena toxin can be explained by a specific and direct effect on presynaptic calcium channels in Drosophila motor neurons.

Full text

PDF
3506

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzer S. From the gene to behavior. JAMA. 1971 Nov 15;218(7):1015–1022. [PubMed] [Google Scholar]
  2. Creba J. A., Karobath M. The effect of dihydropyridine calcium agonists and antagonists on neuronal voltage sensitive calcium channels. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1038–1047. doi: 10.1016/0006-291x(86)90356-6. [DOI] [PubMed] [Google Scholar]
  3. Ganetzky B., Wu C. F. Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J Neurophysiol. 1982 Mar;47(3):501–514. doi: 10.1152/jn.1982.47.3.501. [DOI] [PubMed] [Google Scholar]
  4. Ganetzky B., Wu C. F. Neurogenetic analysis of potassium currents in Drosophila: synergistic effects on neuromuscular transmission in double mutants. J Neurogenet. 1983 Sep;1(1):17–28. doi: 10.3109/01677068309107069. [DOI] [PubMed] [Google Scholar]
  5. Hagiwara S., Fukuda J., Eaton D. C. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol. 1974 May;63(5):564–578. doi: 10.1085/jgp.63.5.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hildebrandt J. D., Codina J., Risinger R., Birnbaumer L. Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni. J Biol Chem. 1984 Feb 25;259(4):2039–2042. [PubMed] [Google Scholar]
  7. Jan L. Y., Jan Y. N. Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2700–2704. doi: 10.1073/pnas.79.8.2700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jan L. Y., Jan Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol. 1976 Oct;262(1):189–214. doi: 10.1113/jphysiol.1976.sp011592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jan Y. N., Jan L. Y., Dennis M. J. Two mutations of synaptic transmission in Drosophila. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):87–108. doi: 10.1098/rspb.1977.0087. [DOI] [PubMed] [Google Scholar]
  10. Kerr L. M., Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature. 1984 Mar 15;308(5956):282–284. doi: 10.1038/308282a0. [DOI] [PubMed] [Google Scholar]
  11. Kongsamut S., Miller R. J. Nerve growth factor modulates the drug sensitivity of neurotransmitter release from PC-12 cells. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2243–2247. doi: 10.1073/pnas.83.7.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Olivera B. M., Gray W. R., Zeikus R., McIntosh J. M., Varga J., Rivier J., de Santos V., Cruz L. J. Peptide neurotoxins from fish-hunting cone snails. Science. 1985 Dec 20;230(4732):1338–1343. doi: 10.1126/science.4071055. [DOI] [PubMed] [Google Scholar]
  14. Suszkiw J. B., O'Leary M. E., Murawsky M. M., Wang T. Presynaptic calcium channels in rat cortical synaptosomes: fast-kinetics of phasic calcium influx, channel inactivation, and relationship to nitrendipine receptors. J Neurosci. 1986 May;6(5):1349–1357. doi: 10.1523/JNEUROSCI.06-05-01349.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Usherwood P. N., Duce I. R. Antagonism of glutamate receptor channel complexes by spider venom polypeptides. Neurotoxicology. 1985 Summer;6(2):239–249. [PubMed] [Google Scholar]
  16. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES