Abstract
The structure of the glycosaminoglycan chain of a heparan sulfate proteoglycan isolated from the conditioned medium of an endothelial cell line has been analyzed by using various degradative enzymes (heparitinase I, heparitinase II, heparinase, glycuronidase, sulfatases) from Flavobacterium heparinum. This proteoglycan inhibits the thromboplastin-activated pathway of coagulation; as a consequence, the catalytic conversion of prothrombin to thrombin is arrested. Heparitinase I (EC 4.2.2.8), an enzyme with specificity restricted to the heparan sulfate portion of the polysaccharide, releases fragments with the electrophoretic mobility and the structure of heparin. Conversely, an assessment of the size and distribution of the heparan sulfate regions has been provided by the use of heparinase (EC 4.2.2.7), which, by degrading the heparin sections of the chain, releases two segments that exhibit the structure of heparan sulfate. One of these segments is attached to the protein core. On the basis of these findings, the heparan sulfate chain can be defined as a copolymer containing heparin regions in its structure. The combined use of these enzymes has made it possible to establish the disaccharide sequence of parts of the glycosaminoglycan moiety of this proteoglycan.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buonassisi V., Colburn P. Biological significance of heparan sulfate proteoglycans. Ann N Y Acad Sci. 1982;401:76–84. doi: 10.1111/j.1749-6632.1982.tb25708.x. [DOI] [PubMed] [Google Scholar]
- Buonassisi V., Venter J. C. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc Natl Acad Sci U S A. 1976 May;73(5):1612–1616. doi: 10.1073/pnas.73.5.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CIFONELLI J. A., DORFMAN A. Properties of heparin monosulfate (heparitin monosulfate). J Biol Chem. 1960 Nov;235:3283–3286. [PubMed] [Google Scholar]
- Colburn P., Buonassisi V. Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun. 1982 Jan 15;104(1):220–227. doi: 10.1016/0006-291x(82)91962-3. [DOI] [PubMed] [Google Scholar]
- Dietrich C. P., De Oca H. M. Production of heparin related mucopolysaccharides by mammalian cells in culture. Proc Soc Exp Biol Med. 1970 Sep;134(4):955–962. doi: 10.3181/00379727-134-34920. [DOI] [PubMed] [Google Scholar]
- Dietrich C. P., Nader H. B., Straus A. H. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem Biophys Res Commun. 1983 Mar 29;111(3):865–871. doi: 10.1016/0006-291x(83)91379-7. [DOI] [PubMed] [Google Scholar]
- Dietrich C. P., Sampaio L. O., Toledo O. M., Cássaro C. M. Cell recognition and adhesiveness: a possible biological role for the sulfated mucopolysaccharides. Biochem Biophys Res Commun. 1977 Mar 21;75(2):329–336. doi: 10.1016/0006-291x(77)91046-4. [DOI] [PubMed] [Google Scholar]
- Dietrich C. P., Silva M. E., Michelacci Y. M. Sequential degradation of heparin in Flavobacterium heparinum. Purification and properties of five enzymes involved in heparin degradation. J Biol Chem. 1973 Sep 25;248(18):6408–6415. [PubMed] [Google Scholar]
- Gowda D. C., Bhavanandan V. P., Davidson E. A. Isolation and characterization of proteoglycans secreted by normal and malignant human mammary epithelial cells. J Biol Chem. 1986 Apr 15;261(11):4926–4934. [PubMed] [Google Scholar]
- Hovingh P., Linker A. The disaccharide repeating-units of heparan sulfate. Carbohydr Res. 1974 Oct;37(1):181–192. doi: 10.1016/s0008-6215(00)87073-1. [DOI] [PubMed] [Google Scholar]
- Jaques L. B., Ballieux R. E., Dietrich C. P., Kavanagh L. W. A microelectrophoresis method for heparin. Can J Physiol Pharmacol. 1968 May;46(3):351–360. doi: 10.1139/y68-055. [DOI] [PubMed] [Google Scholar]
- Kinoshita S., Saiga H. The role of proteoglycan in the development of sea urchins. I. Abnormal development of sea urchin embryos caused by the disturbance of proteoglycan synthesis. Exp Cell Res. 1979 Oct 15;123(2):229–236. doi: 10.1016/0014-4827(79)90463-4. [DOI] [PubMed] [Google Scholar]
- Kraemer P. M. Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971 Apr 13;10(8):1437–1445. doi: 10.1021/bi00784a026. [DOI] [PubMed] [Google Scholar]
- Laterra J., Ansbacher R., Culp L. A. Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6662–6666. doi: 10.1073/pnas.77.11.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcum J. A., Rosenberg R. D. Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells. Biochem Biophys Res Commun. 1985 Jan 16;126(1):365–372. doi: 10.1016/0006-291x(85)90615-1. [DOI] [PubMed] [Google Scholar]
- Nader H. B., Ferreira T. M., Paiva J. F., Medeiros M. G., Jerônimo S. M., Paiva V. M., Dietrich C. P. Isolation and structural studies of heparan sulfates and chondroitin sulfates from three species of molluscs. J Biol Chem. 1984 Feb 10;259(3):1431–1435. [PubMed] [Google Scholar]
- Silva M. E., Dietrich C. P. Structure of heparin. Characterization of the products formed from heparin by the action of a heparinase and a heparitinase from Flavobacterium heparinum. J Biol Chem. 1975 Sep 10;250(17):6841–6846. [PubMed] [Google Scholar]
- Silva M., Dietrich C. P., Nader H. B. On the structure of heparitin sulfates. Analyses of the products formed from heparitin sulfates by two heparitinases and a heparinase from Flavobacterium heparinum. Biochim Biophys Acta. 1976 Jun 23;437(1):129–141. doi: 10.1016/0304-4165(76)90354-8. [DOI] [PubMed] [Google Scholar]


