Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):o237. doi: 10.1107/S160053681005333X

3-[4-(Dimethyl­amino)­phen­yl]-1-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octa­hydro­naphthalen-2-yl)prop-2-en-1-one

Mohamed Tebbaa a, Mohamed Akssira a,*, Ahmed Elhakmaoui a, Ahmed Benharref b, Jean-Claude Daran c, Moha Berraho b
PMCID: PMC3050138  PMID: 21522737

Abstract

The title compound, C23H31NO, was semisynthesized from isocostic acid, isolated from the aerial part of Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter]. The cyclo­hexene ring has a half-chair conformation, whereas the cyclo­hexane ring displays a chair conformation. The dihedral angle between the latter ring and its substituent is 83.6 (7)°.

Related literature

For background to the medicinal inter­est in Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970); Bohlman & Gupta (1982); Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For the synthesis, see: Kutney & Singh (1984). For conformational analysis, see: Cremer & Pople (1975).graphic file with name e-67-0o237-scheme1.jpg

Experimental

Crystal data

  • C23H31NO

  • M r = 337.49

  • Monoclinic, Inline graphic

  • a = 6.0593 (4) Å

  • b = 7.2095 (7) Å

  • c = 21.8937 (19) Å

  • β = 91.860 (7)°

  • V = 955.91 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.6 × 0.25 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini ultra diffractometer

  • 8394 measured reflections

  • 2112 independent reflections

  • 1894 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.05

  • 2112 reflections

  • 230 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005333X/fj2378sup1.cif

e-67-0o237-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005333X/fj2378Isup2.hkl

e-67-0o237-Isup2.hkl (101.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Our work lies within the framework of the valorization of medicinals plants and concerning Inula Viscosa(L) Aiton or Dittrichia Viscosa (L) Greuter. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco It is a well known medicinal plant (Shtacher & Kasshman, 1970; Bohlman & Gupta, 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988). The isocostic acid is a major constituent of the dichloromethane extract of the Inula viscosa (L).The literature does not report any article on the transformation of this acid. In order to prepare products with high added value, we studied the reactivity of this acid. Thus, from this acid, we have prepared by reaction of Curtius the 1 - (4a, 8-dimethyl-1, 2,3,4,4 a, 5,6,8 a-octahydro- naphthalen-2-yl)-ethanone which was synthesized by Kutney et al.(1984). The Condensation of this ketone with 4-dimethylamino-benzaldehyde in the presence of sodium hydroxide allows us to obtain the title compound with a good yield of 80%. The structure of this new derivative of isocostic acid was established by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure. The molecule is built up from two fused six-membered rings, substituted by 4-dimethyl-amino-phenylpropanoyl. The molecular structure of (I),Fig.1, shows the cyclohexene ring to adopt a half chair conformation as indicated by the total puckering amplitude Q(T)= 0.506 (2)Å and spherical polar angle θ = 48.8 (2)° with φ = 18.5 (3)°. By contrast the cyclohexane ring has a chair conformation with Q(T)= 0.574 (2)Å and spherical polar angle θ = 173.9 (2)° with φ = 28.6 (18)° (Cremer and Pople,1975).

Experimental

In a flask was introduced a mixture of 500 mg (2.42 mmol), of 1 - (4a, 8-dimethyl-1, 2,3,4,4a,5,6,8 a-octahydro-naphthalen-2 -yl)-ethanone, 360 mg (2.42 mmol.) of 4-dimethylamino-benzaldehyde, 30 ml of anhydrous ethanol and 1 ml of a solution of sodium hydroxide(2 N). The mixture was stirred for three hours at room temperature. After neutralization followed by extraction three time with 20 ml of dichloromethane, the organic phase is dried over sodium sulfate, then evaporated under vacuum. Chromatography on a column of silica gel with hexane-ethyl acetate (98:2) as eluent of the residue allowed us to obtain 3-(4-dimethylamino-phenyl)(4a,8-dimethyl-1,2, 3,4,4a,5,6,8a-octahydro-naphthalene-2-yl)-propene-1-one with a yield of 80%. The title compound is recrystallized in hexane-ethyl acetate (95/5).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine and OH) or Uiso(H) = 1.5Ueq(methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1783 Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C23H31NO F(000) = 368
Mr = 337.49 Dx = 1.173 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4058 reflections
a = 6.0593 (4) Å θ = 3.0–28.5°
b = 7.2095 (7) Å µ = 0.07 mm1
c = 21.8937 (19) Å T = 298 K
β = 91.860 (7)° Prism, colourless
V = 955.91 (14) Å3 0.6 × 0.25 × 0.10 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur Eos Gemini ultra diffractometer 1894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
graphite θmax = 26.4°, θmin = 3.0°
Detector resolution: 16.1978 pixels mm-1 h = −7→7
φ and ω scans k = −9→7
8394 measured reflections l = −27→27
2112 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.056P)2 + 0.0652P] where P = (Fo2 + 2Fc2)/3
2112 reflections (Δ/σ)max = 0.002
230 parameters Δρmax = 0.21 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7303 (3) 0.8137 (3) 1.01854 (8) 0.0250 (4)
C2 0.9300 (3) 0.7287 (3) 1.00424 (8) 0.0278 (4)
H2 1.0181 0.6768 1.0353 0.033*
C3 0.9978 (3) 0.7208 (3) 0.94506 (8) 0.0280 (4)
H3 1.1328 0.6656 0.9373 0.034*
C4 0.8718 (3) 0.7923 (2) 0.89613 (8) 0.0263 (4)
C5 0.6725 (3) 0.8750 (3) 0.91030 (8) 0.0287 (4)
H5 0.5835 0.9236 0.8788 0.034*
C6 0.6025 (3) 0.8873 (3) 0.96950 (8) 0.0281 (4)
H6 0.4689 0.9450 0.9771 0.034*
C7 0.9359 (3) 0.7711 (3) 0.83304 (8) 0.0295 (4)
H7 0.8257 0.7832 0.8027 0.035*
C8 1.1400 (3) 0.7357 (3) 0.81514 (9) 0.0345 (4)
H8 1.2509 0.7321 0.8455 0.041*
C9 1.2066 (3) 0.7020 (3) 0.75226 (9) 0.0371 (5)
C10 1.0332 (3) 0.6566 (3) 0.70325 (8) 0.0321 (4)
H10 0.9057 0.7376 0.7089 0.038*
C11 1.1144 (4) 0.6858 (3) 0.63863 (9) 0.0422 (5)
H11A 1.1362 0.8174 0.6317 0.051*
H11B 1.2556 0.6244 0.6348 0.051*
C12 0.9521 (4) 0.6105 (3) 0.59038 (8) 0.0407 (5)
H12A 0.8182 0.6843 0.5905 0.049*
H12B 1.0155 0.6235 0.5505 0.049*
C13 0.8930 (3) 0.4083 (3) 0.60040 (8) 0.0299 (4)
C14 0.7155 (3) 0.3441 (4) 0.55361 (8) 0.0396 (5)
H14A 0.5853 0.4212 0.5571 0.048*
H14B 0.7699 0.3597 0.5127 0.048*
C15 0.6526 (3) 0.1432 (4) 0.56287 (9) 0.0458 (6)
H15A 0.5140 0.1185 0.5410 0.055*
H15B 0.7646 0.0643 0.5457 0.055*
C16 0.6295 (3) 0.0958 (3) 0.62862 (9) 0.0408 (5)
H16 0.5651 −0.0174 0.6379 0.049*
C17 0.6948 (3) 0.2044 (3) 0.67505 (8) 0.0317 (4)
C18 0.7946 (3) 0.3924 (3) 0.66407 (7) 0.0265 (4)
H18 0.6723 0.4812 0.6646 0.032*
C19 0.9605 (3) 0.4550 (3) 0.71385 (8) 0.0290 (4)
H19A 1.0886 0.3744 0.7140 0.035*
H19B 0.8940 0.4452 0.7534 0.035*
C20 1.0979 (3) 0.2867 (3) 0.59410 (9) 0.0393 (5)
H20A 1.0624 0.1607 0.6040 0.059*
H20B 1.2134 0.3303 0.6215 0.059*
H20C 1.1466 0.2929 0.5529 0.059*
C21 0.6499 (4) 0.1524 (4) 0.73956 (10) 0.0524 (6)
H21A 0.5633 0.0409 0.7399 0.079*
H21B 0.5703 0.2508 0.7586 0.079*
H21C 0.7871 0.1321 0.7617 0.079*
C22 0.8030 (3) 0.7487 (3) 1.12674 (9) 0.0393 (5)
H22A 0.8180 0.6174 1.1209 0.059*
H22B 0.7360 0.7719 1.1651 0.059*
H22C 0.9462 0.8058 1.1267 0.059*
C23 0.4516 (3) 0.8908 (3) 1.09306 (9) 0.0374 (5)
H23A 0.3430 0.7989 1.0819 0.056*
H23B 0.4199 1.0037 1.0712 0.056*
H23C 0.4482 0.9137 1.1362 0.056*
N1 0.6663 (2) 0.8252 (2) 1.07791 (7) 0.0325 (4)
O1 1.4040 (2) 0.6982 (3) 0.74180 (8) 0.0544 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0224 (7) 0.0172 (9) 0.0354 (8) −0.0036 (7) −0.0016 (6) −0.0015 (7)
C2 0.0252 (8) 0.0228 (10) 0.0352 (9) 0.0016 (8) −0.0042 (7) 0.0000 (8)
C3 0.0235 (7) 0.0214 (10) 0.0389 (9) 0.0023 (7) 0.0001 (7) −0.0031 (8)
C4 0.0273 (8) 0.0171 (10) 0.0342 (9) −0.0033 (7) −0.0014 (7) −0.0016 (7)
C5 0.0267 (8) 0.0229 (10) 0.0361 (9) −0.0011 (7) −0.0059 (7) 0.0015 (8)
C6 0.0230 (7) 0.0206 (9) 0.0406 (10) 0.0026 (7) −0.0027 (7) −0.0002 (8)
C7 0.0353 (9) 0.0189 (10) 0.0339 (9) −0.0044 (7) −0.0025 (7) −0.0009 (7)
C8 0.0334 (9) 0.0317 (11) 0.0382 (10) −0.0077 (9) −0.0016 (7) −0.0066 (8)
C9 0.0374 (9) 0.0279 (11) 0.0463 (11) −0.0089 (9) 0.0073 (8) −0.0057 (9)
C10 0.0379 (9) 0.0269 (11) 0.0318 (9) −0.0051 (8) 0.0072 (7) −0.0005 (8)
C11 0.0544 (12) 0.0335 (12) 0.0396 (10) −0.0104 (10) 0.0152 (9) 0.0056 (9)
C12 0.0547 (11) 0.0415 (13) 0.0267 (9) 0.0020 (10) 0.0115 (8) 0.0086 (9)
C13 0.0314 (8) 0.0349 (11) 0.0237 (8) 0.0046 (8) 0.0054 (7) −0.0005 (8)
C14 0.0383 (10) 0.0566 (15) 0.0239 (8) 0.0093 (10) 0.0009 (7) −0.0053 (9)
C15 0.0403 (11) 0.0575 (15) 0.0395 (10) −0.0011 (11) −0.0006 (8) −0.0215 (10)
C16 0.0335 (9) 0.0391 (13) 0.0499 (11) −0.0039 (9) 0.0004 (8) −0.0091 (10)
C17 0.0278 (8) 0.0328 (11) 0.0346 (9) −0.0028 (8) 0.0021 (7) −0.0024 (8)
C18 0.0271 (8) 0.0292 (10) 0.0233 (8) 0.0029 (8) 0.0036 (6) −0.0010 (7)
C19 0.0349 (9) 0.0278 (10) 0.0244 (8) −0.0059 (8) 0.0027 (7) 0.0008 (7)
C20 0.0306 (9) 0.0467 (14) 0.0410 (10) 0.0038 (9) 0.0069 (8) −0.0074 (9)
C21 0.0661 (14) 0.0480 (15) 0.0433 (11) −0.0277 (13) 0.0041 (10) 0.0073 (11)
C22 0.0369 (9) 0.0459 (14) 0.0350 (9) 0.0075 (10) 0.0017 (7) 0.0030 (9)
C23 0.0329 (9) 0.0344 (11) 0.0452 (11) 0.0081 (9) 0.0050 (8) −0.0013 (9)
N1 0.0264 (7) 0.0366 (10) 0.0347 (8) 0.0037 (7) 0.0020 (6) 0.0032 (7)
O1 0.0352 (7) 0.0667 (12) 0.0619 (9) −0.0137 (8) 0.0125 (7) −0.0192 (9)

Geometric parameters (Å, °)

C1—N1 1.371 (2) C13—C18 1.538 (2)
C1—C2 1.401 (2) C14—C15 1.513 (4)
C1—C6 1.407 (2) C14—H14A 0.9700
C2—C3 1.373 (2) C14—H14B 0.9700
C2—H2 0.9300 C15—C16 1.490 (3)
C3—C4 1.394 (2) C15—H15A 0.9700
C3—H3 0.9300 C15—H15B 0.9700
C4—C5 1.390 (2) C16—C17 1.333 (3)
C4—C7 1.455 (2) C16—H16 0.9300
C5—C6 1.380 (2) C17—C21 1.495 (3)
C5—H5 0.9300 C17—C18 1.507 (3)
C6—H6 0.9300 C18—C19 1.527 (2)
C7—C8 1.334 (3) C18—H18 0.9800
C7—H7 0.9300 C19—H19A 0.9700
C8—C9 1.467 (3) C19—H19B 0.9700
C8—H8 0.9300 C20—H20A 0.9600
C9—O1 1.226 (2) C20—H20B 0.9600
C9—C10 1.513 (3) C20—H20C 0.9600
C10—C11 1.527 (2) C21—H21A 0.9600
C10—C19 1.538 (3) C21—H21B 0.9600
C10—H10 0.9800 C21—H21C 0.9600
C11—C12 1.520 (3) C22—N1 1.441 (2)
C11—H11A 0.9700 C22—H22A 0.9600
C11—H11B 0.9700 C22—H22B 0.9600
C12—C13 1.519 (3) C22—H22C 0.9600
C12—H12A 0.9700 C23—N1 1.433 (2)
C12—H12B 0.9700 C23—H23A 0.9600
C13—C20 1.530 (3) C23—H23B 0.9600
C13—C14 1.533 (2) C23—H23C 0.9600
N1—C1—C2 120.75 (15) C15—C14—H14B 109.2
N1—C1—C6 122.33 (15) C13—C14—H14B 109.2
C2—C1—C6 116.91 (15) H14A—C14—H14B 107.9
C3—C2—C1 121.08 (16) C16—C15—C14 112.40 (17)
C3—C2—H2 119.5 C16—C15—H15A 109.1
C1—C2—H2 119.5 C14—C15—H15A 109.1
C2—C3—C4 122.42 (16) C16—C15—H15B 109.1
C2—C3—H3 118.8 C14—C15—H15B 109.1
C4—C3—H3 118.8 H15A—C15—H15B 107.9
C5—C4—C3 116.43 (16) C17—C16—C15 124.5 (2)
C5—C4—C7 121.17 (15) C17—C16—H16 117.7
C3—C4—C7 122.26 (16) C15—C16—H16 117.7
C6—C5—C4 122.21 (16) C16—C17—C21 120.97 (19)
C6—C5—H5 118.9 C16—C17—C18 121.17 (17)
C4—C5—H5 118.9 C21—C17—C18 117.56 (17)
C5—C6—C1 120.93 (16) C17—C18—C19 114.25 (15)
C5—C6—H6 119.5 C17—C18—C13 112.40 (15)
C1—C6—H6 119.5 C19—C18—C13 111.05 (13)
C8—C7—C4 125.31 (16) C17—C18—H18 106.2
C8—C7—H7 117.3 C19—C18—H18 106.2
C4—C7—H7 117.3 C13—C18—H18 106.2
C7—C8—C9 126.40 (17) C18—C19—C10 110.91 (16)
C7—C8—H8 116.8 C18—C19—H19A 109.5
C9—C8—H8 116.8 C10—C19—H19A 109.5
O1—C9—C8 118.61 (18) C18—C19—H19B 109.5
O1—C9—C10 121.48 (17) C10—C19—H19B 109.5
C8—C9—C10 119.69 (16) H19A—C19—H19B 108.0
C9—C10—C11 112.96 (16) C13—C20—H20A 109.5
C9—C10—C19 107.05 (17) C13—C20—H20B 109.5
C11—C10—C19 111.88 (16) H20A—C20—H20B 109.5
C9—C10—H10 108.3 C13—C20—H20C 109.5
C11—C10—H10 108.3 H20A—C20—H20C 109.5
C19—C10—H10 108.3 H20B—C20—H20C 109.5
C12—C11—C10 111.96 (16) C17—C21—H21A 109.5
C12—C11—H11A 109.2 C17—C21—H21B 109.5
C10—C11—H11A 109.2 H21A—C21—H21B 109.5
C12—C11—H11B 109.2 C17—C21—H21C 109.5
C10—C11—H11B 109.2 H21A—C21—H21C 109.5
H11A—C11—H11B 107.9 H21B—C21—H21C 109.5
C13—C12—C11 113.12 (17) N1—C22—H22A 109.5
C13—C12—H12A 109.0 N1—C22—H22B 109.5
C11—C12—H12A 109.0 H22A—C22—H22B 109.5
C13—C12—H12B 109.0 N1—C22—H22C 109.5
C11—C12—H12B 109.0 H22A—C22—H22C 109.5
H12A—C12—H12B 107.8 H22B—C22—H22C 109.5
C12—C13—C20 109.95 (17) N1—C23—H23A 109.5
C12—C13—C14 110.92 (17) N1—C23—H23B 109.5
C20—C13—C14 108.71 (16) H23A—C23—H23B 109.5
C12—C13—C18 107.62 (15) N1—C23—H23C 109.5
C20—C13—C18 112.25 (15) H23A—C23—H23C 109.5
C14—C13—C18 107.38 (14) H23B—C23—H23C 109.5
C15—C14—C13 111.95 (18) C1—N1—C23 121.75 (15)
C15—C14—H14A 109.2 C1—N1—C22 120.44 (15)
C13—C14—H14A 109.2 C23—N1—C22 117.33 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2378).

References

  1. Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352. [PubMed]
  2. Bohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443–1445.
  3. Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–, 1334.
  4. Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Kutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407–1409.
  9. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005333X/fj2378sup1.cif

e-67-0o237-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005333X/fj2378Isup2.hkl

e-67-0o237-Isup2.hkl (101.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES